
This article was downloaded by: [Vienna University Library]
On: 28 October 2013, At: 06:38
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Applicable Analysis: An International
Journal
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gapa20

Internal Gerstner waves: applications
to dead water
Raphael Stuhlmeier a
a Fakultät für Mathematik , Universität Wien , Oskar-Morgenstern-
Platz 1, 1090 , Wien , Austria
Published online: 16 Sep 2013.

To cite this article: Raphael Stuhlmeier , Applicable Analysis (2013): Internal Gerstner
waves: applications to dead water, Applicable Analysis: An International Journal, DOI:
10.1080/00036811.2013.833609

To link to this article:  http://dx.doi.org/10.1080/00036811.2013.833609

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/gapa20
http://dx.doi.org/10.1080/00036811.2013.833609
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Applicable Analysis, 2013
http://dx.doi.org/10.1080/00036811.2013.833609

Internal Gerstner waves: applications to dead water

Raphael Stuhlmeier∗

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, Wien 1090, Austria

Communicated by Adrian Constantin

(Received 30 June 2013; accepted 6 August 2013)

We give an explicit solution describing internal waves with a still-water surface,
a situation akin to the well-known dead-water phenomenon, on the basis of the
Gerstner wave solution to the Euler equations.
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1. Introduction

The phenomenon of dead water was first investigated by Vagn Walfrid Ekman at the
initiative of the Norwegian oceanographer and explorer Fridtjof Nansen, who encountered
it on his famed Fram expedition through the Arctic Ocean, and subsequently proposed its
study to Ekman’s teacher Vilhelm Bjerknes. Descriptions of dead water as encountered by
early seafarers go back to antiquity, an engaging account of which is given by Ekman in
The Norwegian North Polar Expedition.[1]

Dead water is so called for its ability to slacken the speed of a vessel quite suddenly, and
with no apparent cause on the water surface. This phenomenon is prevalent when a layer
of less dense water overlays a layer of denser water, due either to differences in salinity or
temperature. Such instances of fresh or brackish water resting upon heavier sea water occur
at the mouths of rivers, particularly in the Norwegian fjords, where relatively little mixing
of the waters takes place. Internal waves generated at the interface between the two fluids
may impede the progress and steerage of ships.

In the tradition of the early 20th century, Ekman’s work relied on a linearized theory
(based on the discussion of internal waves by Stokes [2]), as did Lamb’s article [3] on
the subject a decade later. More recently, however, both theoretical and experimental
investigations have highlighted the importance of non-linear effects in connection with
the dead-water phenomenon. The experimental study [4] by Mercier et al. revisits Ekman’s
work and goes on to study interfacial waves in three layer as well as linearly stratified fluids
with a pycnocline. Motivated in part by this experimental study, Duchêne [5] has given a
sophisticated analysis of some non-linear models for the dead-water phenomenon, while
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2 R. Stuhlmeier

also incorporating aspects of the ship motion. We refer the reader also to references therein
for a fuller account of the existing literature.

We will provide an explicit solution to the non-linear governing equations for water
waves describing such internal waves which leave no trace upon the surface of the water.
While the passage of a ship would necessarily generate waves both on the water surface
and at the pycnocline, the surface waves will be of considerably diminished amplitude,[1]
and these long and low waves may well escape notice both by mariners as well as in the
laboratory.[4,p.194]

The mechanism of generation of these waves by a vessel is, regrettably, outside of the
scope of this study and we provide only a description of the wave motion itself, based
on the simple insight that the classical Gerstner wave can propagate also at an interface
between two liquid regions. The difference between the problem presented at the two-
fluid interface and the usual water wave problem at the free surface manifests in the fact
that the pressure at the interface is no longer constant, but hydrostatic. The Gerstner wave
construction allows the pressures at the interface to be matched, which introduces a reduced
gravity into the problem. While the classical Gerstner wave is uniquely characterized by
its isobaric streamlines (cf. Kalisch [6] and Matioc and Matioc [7]), the internal Gerstner
wave no longer exhibits this feature.

2. Governing equations

The physical situation as seen in Figure 1 may be captured as follows: Let our fluid be
contained in the region {(x, y) | x ∈ R, y ≤ 0}, while the upper half-plane y > 0 is
assumed to be composed of air with negligible density which does not interact with the
fluid below. We will assume that the upper layer of fluid has a constant density ρ1, and the
lower fluid a density ρ2,with ρ1 < ρ2, the interface between these immiscible layers being
denoted by η(x, t).

The governing equations for two-dimensional, incompressible, inviscid-free surface
flow are the equation of mass conservation

ux + vy = 0 (1)

and the Euler equation

ut + uux + vuy = − Px

ρ
, vt + uvx + vvy = − Py

ρ
− g, (2)

supplemented by kinematic boundary conditions on each interface and a dynamic condition
at y = 0, cf. [8]. Here, the horizontal and vertical components of the velocity field are
u(x, y, t) respectively v(x, y, t),while P(x, y, t) denotes the pressure, and g is the constant
gravitational acceleration. Subscripts indicate a partial derivative.

Figure 1. Internal waves at the interface between lighter (density ρ1) and heavier (density ρ2) water.

D
ow

nl
oa

de
d 

by
 [

V
ie

nn
a 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

6:
38

 2
8 

O
ct

ob
er

 2
01

3 



Applicable Analysis 3

In order to decouple the motion of the air from that of the water, we introduce a dynamic
boundary condition at the water surface:

P = Patm on y = 0, (3)

which specifies that the pressure at the upper interface is equal to the atmospheric pressure
Patm . We are interested in an interface describing steady waves, and may thus assume
η = η(x + ct). In order to assure that this interface separates the fluids completely, one
introduces a further, kinematic, boundary condition specifying that the fluid velocity thereon
is wholly tangential. Temporarily denoting by (u1, v1) and (u2, v2) the velocity fields of
the upper respectively lower layer, this condition takes the form

vi = η′(ui + c) on y = η, for i = 1, 2. (4)

As we shall not account for motion far below the water surface, there is no need to specify a
similar condition for the sea floor. Instead, we will assume that our motion dies out at great
depth

u2, v2 → 0 as y → −∞.

The top layer of water will be assumed to be moving with the wave at speed c, and
the assumption of a flat water surface then implies (u1, v1) = (−c, 0). This satisfies the
kinematic boundary condition at the interface (4), and, trivially, the same condition at the
water surface y = 0. Hence, in the near-surface layer, (2) becomes

Px = 0 and − Py = ρ1g

which, along with the condition (3) that the pressure be equal to the atmospheric pressure
at the flat water surface, yields

P = Patm − ρ1gy (5)

throughout the upper fluid layer.

3. Structure of the solution

In order to describe the internal wave, we are interested in, we specify the particle paths of
our solution in Lagrangian, or material, coordinates (a, b), with a ∈ R and b ≤ b0 ≤ 0,
where b0 will describe the interface between the two fluids. Indeed, the wave motion is
simply that of Gerstner’s trochoidal solution,[9] though we shall see that the pressure at the
interface η will lead to some modifications. The particle trajectories are given by

x = a + emb

m
sin m(a + ct),

y = b − emb

m
cos m(a + ct).

Then, we find the accelerations to be:

Du

Dt
= −c2memb sin m(a + ct),

Dv

Dt
= c2memb cos m(a + ct).
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4 R. Stuhlmeier

Because the motion is two-dimensional, we may also specify the velocity field via a stream
function,

ψ = c

(
b − e2mb

2m

)
,

where, imposing a forward velocity c to every particle so that the motion becomes steady,
we find ∇ψ = (−v, u), and identify the streamlines to be curves of constant b. Setting for
readability m(a + ct) = θ and mb = ξ, we find

Px = ρ2c2meξ sin θ,

Py = −ρ2(c
2meξ cos θ + g).

Now, transforming to material coordinates via(
Pa

Pb

)
=

(
1 + eξ cos θ eξ sin θ

eξ sin θ 1 − eξ cos θ

)(
Px

Py

)
(6)

yields

Pa = ρ2(c
2m − g)eξ sin θ,

Pb = ρ2c2me2ξ − ρ2g + ρ2

(
g − c2m

)
eξ cos θ,

which we may integrate to yield a pressure

P = −ρ2(c
2m − g)

eξ

m
cos θ + ρ2

c2

2
e2ξ − ρ2gb + C. (7)

At the interface, which we take as the streamline b = b0, the above pressure must match
that for the still fluid (5), given in material coordinates by

P = Patm − ρ1g

(
b − emb

m
cos m(a + ct)

)
. (8)

This means that we must require

gρ1 = ρ2

(
g − c2m

)
,

which is equivalent to

c2m = g
ρ2 − ρ1

ρ2
,

the right-hand side of which is simply the reduced gravity, which we denote by g0, implying
that the interfacial waves propagate with a celerity

c = √
g0/m.

This is clearly consistent with the propagation speed of classical Gerstner waves, which
is recovered by setting ρ1 = 0. The equation of mass conservation (1) is equivalent to
the determinant of the coordinate transform (6) being time-independent, which is readily
verified.

The parameter b0 which defines the interface also determines the form thereof: b0 = 0
corresponding to a cycloid with sharp crests, while b0 < 0 describes a smooth, trochoidal
profile. The assumption that b0 ≤ 0 is made to ensure that there are no self-intersecting
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Applicable Analysis 5

particle paths. The matching of pressures (7) and (8) at b = b0 further necessitates that b0
be the solution to the equation

ρ2g0

(
1

2m
e2mb − b

)
= Patm − C.

This solution is unique for a suitable choice of constants, as the left-hand side is a strictly
decreasing function of b whose value in the limit b → −∞ is clearly +∞.

4. Discussion

We have provided a solution describing waves with a trochoidal profile propagating at the
interface between water of two different densities, with a flat upper surface. The Gerstner
wave which forms the cornerstone of this construction belongs to the early history of
water wave theory. First discovered by its namesake Franz Joseph Gerstner in 1804 [9],
and republished five years later [10], it did not gain widespread attention. More than half
a century later, in England, a paper by William Froude [11] excited some discussion on
trochoidal waves, stimulating Froude and William J. M. Rankine to rediscover the Gerstner
solution nearly simultaneously,[12] a feat repeated by Frédéric Reech in France [13] six
years later. A modern treatment of the Gerstner flow, proving its dynamic feasibility, was
given by Constantin [14] and Henry [15]. The particle motion is along circular trajectories
with angular velocity mc, the radius decreasing exponentially with depth. For positive
celerity c, the waves move in the negative x direction, and there is a negative vorticity
associated with the wave motion – this latter indicating that the waves cannot be generated
from rest by potential forces in an inviscid, homogeneous fluid. Moreover, the circular
particle paths are a hallmark of vorticity, since for irrotational Stokes waves the particle
trajectories have quite a different pattern cf. recent work by Constantin [16], Constantin
and Strauss [17], and Henry [18].

It should be noted that the peculiar structure of the Gerstner solution is, perhaps, a mixed
blessing – while it furnishes us with an explicit solution whose profile is more realistic than
the sinusoid of the linear theory, at the same time the non-linear boundary conditions and
governing equations are very exacting, leaving only little leeway to include other effects. At
the same time, as the Gerstner wave is the only available explicit solution to the full water
wave problem, it has been adapted to many diverse, and highly important, physical settings
(some recent work in this direction on geophysical waves was done by Constantin [19,20]
and Henry [21], but important early contributions were also made by Mollo-Christensen
[22,23]). Despite this special structure, recent work on deep-water waves by Monismith
et al. [24] finds that Gerstner wave theory fits observed mean velocities beneath deep-water
waves better than the classical Stokes theory.

In contrast to the classical Gerstner wave solution which is uniquely characterized by
its isobaric streamlines, with the inclusion of an upper layer of water the pressure (7) is no
longer constant along streamlines, but exhibits an oscillatory time-dependence. On account
of this, our solution is also distinct from the Gerstner wave in stratified water [25,26],
where lines of constant density and constant pressure coincide with the streamlines. In fact,
upon passing to a reference frame moving with speed c, constancy of the density along
streamlines, i.e. ρa = 0, is ensured by the continuity equation – in our setting, the form of
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6 R. Stuhlmeier

the pressure precludes the possibility of exploiting this to describe a heterogeneous bottom
layer.
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