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Adapting Havelock’s wave-maker theorem to acoustic-gravity waves
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We investigate the different wave-modes generated by a wave-maker in compressible flow. In addition
to the propagating and evanescent waves found in the incompressible case, new radially propagating
acoustic-gravity modes appear. We discuss the asymptotic behaviour of these waves, and give an example
for a simple line wave-maker configuration.
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1. Introduction

The problem of a wave-maker in infinitely deep water was first investigated by Havelock (1929). In sub-
sequent years, Rhodes-Robinson (1971) and Hocking & Mahdmina (1991) extended Havelock’s wave-
maker theory to waves with surface tension, and considerable recent work has focused on extensions to
different physical settings (e.g. Mohapatra et al., 2011 for two-layer fluids, Chakrabarti & Sahoo, 1998
for porous wave-makers).

We study the problem of forced waves in water when compressibility is retained—this problem
presents the novel phenomenon of acoustic-gravity modes, waves propagating radially outward at the
speed of sound. Acoustic-gravity waves have received much recent interest, for example, in connection
with tsunami (see Nosov, 1999 or Stiassnie, 2009) or deep-ocean circulation (see Kadri, 2014). While
the generation mechanisms of acoustic-gravity waves have recently received attention also in terms of
resonant wave interaction (see the discussion in Kadri, 2015), we intend to shed some light on their
generation by wave-makers.

In contrast to earlier work on compressible flow, we focus on the case of infinite water depth. Some
qualitative information about the behaviour of the different wave-components generated by a wave-
maker is presented, in particular, the asymptotic behaviour of the new acoustic-gravity waves. We
examine also the partition of energy into the different modes, and provide a numerical example for
a line wave-maker.

In the bulk of this paper, we focus on waves where gravity is the sole restoring force, and as such will
consider wave periods between 0.3 and 30 s (corresponding to frequencies ω between 0.2 and 20 s−1).
Some remarks on higher frequencies, which necessitate the introduction of surface tension, are deferred
to the discussion.

The paper is structured as follows: in Section 2, we formulate the governing equations for the wave-
maker problem. In Section 3, we present the classical solution for the wave-maker in incompressible
flow and the new, compressible solution. Section 4 is devoted to the physical interpretation of this
new solution, and to the structure of the acoustic-gravity waves. The asymptotics presented therein
are verified by energy considerations in Section 5, where the distribution of energy in the different
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modes is elucidated. Section 6 presents an explicit example, when the wave-maker is of δ-function
type. Section 7 contains a comparison with the limiting cases of pure-acoustic and pure-gravity waves.
Finally, Section 8 contains some concluding remarks and a discussion of some natural companion prob-
lems: that of finite water depth; the inclusion of surface tension for higher frequencies; and a brief
discussion of the applicability of acoustic-gravity waves.

2. Formulation of the incompressible/compressible problems

We consider the 2D, irrotational motion of an inviscid fluid, whose velocity field may be described
by a potential Φ(x, z, t), where x is the horizontal coordinate, z is measured vertically upward and t is
time. The domain under consideration is {(x, z) | x ∈ R

+, z ∈ (−∞, 0]}, where the wave-maker is placed
along the vertical line x = 0. When compressibility is retained, the linearized field equation is the wave
equation

Φtt = c2
s (Φxx +Φzz) , (2.1)

and cs is the speed of sound. For an investigation of time-harmonic motions with frequency ω, this
reduces our linear governing equations to the Helmholtz equation by substituting Φ = e−iωtφ,

φxx + φzz + k2
sφ = 0 (ks =ω/cs) (2.2)

with the free-surface boundary condition (posed on the line z = 0 after linearization)

φz(x, 0)= Kφ(x, 0),
(
K =ω2/g

)
, (2.3)

where g is the acceleration of gravity. We assume that there are no incoming waves from +∞ in x and
−∞ in z (Sommerfeld’s radiation condition). Neglecting the effects of compressibility is equivalent to
allowing cs → ∞, whereupon the field equation reduces to the Laplace equation. We further specify a
Neumann boundary condition to formulate what is known as the wave-maker problem

φx(0, z)= U(z), (2.4)

for a wave-maker making periodic oscillations.

3. Solutions

3.1 Havelock’s solution for incompressible flow

For the incompressible case, Havelock’s solution to the wave-maker problem in infinite depth (Linton
& McIver, 2001) is given by

φ = φg + φe = 2a0 eiKx eKz + 2

π

∫ ∞

0
b(k) e−kx(k cos(kz)+ K sin(kz)) dk, (3.1)

where the coefficients are

a0 = 1

i

∫ 0

−∞
U(z) eKz dz, (3.2a)

b(k)= −1

k

∫ 0

−∞

U(z)

K2 + k2
(k cos(kz)+ K sin(kz)) dz. (3.2b)
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The solution contains progressive gravity waves (φg) and evanescent, standing waves (φe) which are
only of local importance.

3.2 The new solution for compressible flow

For compressible flow, the solution takes the form:

φ(x, z)= φg + φag + φe = 2K eKza0 eix(K2+k2
s )

1/2

+ 2

π

∫ ks

0
a(k) eix(k2

s −k2)
1/2

(k cos(kz)+ K sin(kz)) dk

+ 2

π

∫ ∞

ks

b(k) e−x(k2−k2
s )

1/2

(k cos(kz)+ K sin(kz)) dk. (3.3)

The coefficients a0, a, b are given as follows:

a0 = −i√
K2 + k2

s

∫ 0

−∞
U(z) eKz dz, (3.4a)

a(k)= −i√
k2

s − k2

∫ 0

−∞

U(z)

K2 + k2
(k cos kz + K sin kz) dz, (3.4b)

b(k)= −1√
k2 − k2

s

∫ 0

−∞

U(z)

K2 + k2
(k cos kz + K sin kz) dz. (3.4c)

We may again identify the terms in (3.3) above with distinct physical regimes. Denoting these by

φ = φg + φag + φe,

we find that they have the form of progressive gravity waves (φg), progressive acoustic-gravity waves
(φag) that exist on account of the compressibility (an analogous term is absent from (3.1)), and evanes-
cent standing wave-modes (φe).

It is readily verified that the solution (3.3) satisfies (2.2–2.4), by making use of the identities (see
Mei & Black, 1969)

∫ 0

−∞
ψ(k, z)ψ(k′, z) dz = πδ(k − k′)

2
√(

k2 + K2
) (
(k′)2 + K2

) , (3.5a)

∫ 0

−∞
ψ(k, z) eKz dz = 0, (3.5b)

for ψ(k, z)= k cos kz + K sin kz, (3.5c)

where δ is the Dirac delta function. In the limit as ks → 0, Havelock’s solution (3.1) is recovered from
(3.3). Appendix A contains details of the derivation of this solution.

 at T
echnion-Israel Institute of T

echnology on M
arch 29, 2016

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


4 of 16 R. STUHLMEIER AND M. STIASSNIE

4. Physical interpretation of the solution for compressible flow

4.1 Gravity mode

The gravity mode in the compressible case

φg = 2K eKza0 eix(K2+k2
s )

1/2

very much resembles that found in the incompressible problem. By considering Re{φg e−iωt}, it is seen
that its wave celerity

c =
√

g

K + g/c2
s

changes only slightly on account of the compressibility.

4.2 Evanescent modes

The term associated with evanescent modes is

φe = 2

π

∫ ∞

ks

b(k) e−x(k2−k2
s )

1/2

(k cos(kz)+ K sin(kz)) dk. (4.1)

These standing waves exhibit decay and concurrent oscillation with depth z. As the waves considered
have frequencies on the order of 2 × 10−1 to 2 × 101 s−1 (or, equivalently, 1/3000< ks/K < 1/30), for
practical considerations ks can be neglected, and the evanescent modes behave essentially as those found
in the incompressible case (3.1), which may be written as

πφe =
∫ ∞

0
b(k) e−k(x−iz)(k − iK) dk +

∫ ∞

0
b(k) e−k(x+iz)(k + iK) dk.

Repeated integration by parts then gives an asymptotic expansion in x and z

πφe ∼ b(0)K
z

x2 + z2
+ b(0)

x2 − z2(
x2 + z2

)2 + b′
s(0)K

2xz(
x2 + z2

)2 + higher-order terms. (4.2)

We find 1/x2 polynomial decay with distance from the boundary, and oscillations and 1/z decay
seen with depth. This polynomial decay with distance contrasts markedly with the exponential decay in
x found for finite depth. In Section 6, this decay behaviour for the compressible case is depicted for a
specified wave-maker condition.

4.3 Acoustic-gravity modes

We now turn our attention to the term

φag(x, z)= 2

π

∫ ks

0
a(k) eix(k2

s −k2)
1/2

(k cos(kz)+ K sin(kz)) dk, (4.3)

these waves being acoustic-gravity waves with a rightward propagating component.
By stationary phase methods (see Appendix B), we find that for large distances from the origin, the

acoustic-gravity waves propagate radially outward throughout the fluid domain at the speed of sound cs.
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HAVELOCK’S THEOREM AND ACOUSTIC-GRAVITY WAVES 5 of 16

In polar coordinates x = r cosα and z = r sinα, with r ∈ R
+, α ∈ (−π/2, 0), we write the physical part

of the potential for large r

Re{φag e−iωt}(r 	 0)= Γ√
r

cos(ksr − ωt + γ ), (4.4)

where

Γ =
√

2

ksπ
· ks cos(α)

√
K2 + k2

s sin2(α) · |a(−ks sin(α))|, (4.5a)

γ = − arctan

(
K

ks sin(α)

)
− π

4
+ Arg(a(−ks sinα)). (4.5b)

We see that the acoustic-gravity modes are radial progressive waves decaying as 1/
√

r. In contrast
to the finite-depth case (see Section 8.1, or Kadri & Stiassnie (2012) for further details) where at most
finitely many acoustic-gravity modes exist, there is now a continuum of such modes with wavenumbers
k ∈ (0, ks).

5. Verification by energy considerations

In what follows, we present some considerations of the energy flux for different modes in the wave-
maker problem. In particular, we will use the distribution of energy to verify the asymptotic expansion
for the acoustic-gravity modes. To this end, we revert to Φ = φ · e−iωt and consider the real part of the
resulting potential. According to Stoker (1992), the energy flux across a curve S is given by

F =
∫

S
pun dS, (5.1)

where p = −Re{ρ∂Φ/∂t} is the dynamic pressure, un = Re{∂Φ/∂n} is the velocity normal to S and ρ
is the density of water. The time-averaged energy flux (denoted by a bar) across S is thus

F̄ = ω

2π

∫
S

∫ 2π/ω

0
pun dt dS. (5.2)

Owing to the time averaging and relations (3.5a) and (3.5b) for ψ(k, z) and eKz, it may be established
that

F̄ = −ρω
2π

∫
S

∫ 2π/ω

0

(
Re

{
∂Φg

∂t

}
Re

{
∂Φg

∂n

}
+ Re

{
∂Φag

∂t

}
Re

{
∂Φag

∂n

})
dt dS

= F̄g + F̄ag. (5.3)

In particular, we see that the time-averaged energy flux of the gravity modes Φg through vertical lines
x = x0, x0 ∈ (0, ∞)

F̄g(x0, z)= ρKω|a0|2
√

K2 + k2
s (5.4)
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6 of 16 R. STUHLMEIER AND M. STIASSNIE

is independent of x0, as is expected. For the time-averaged energy flux of the acoustic-gravity modes,
we show that F̄ag through circular arcs (r = r0, −π/2<α < 0) is independent of the choice of r0 for
large r0, and equal to the flux through the plane x = 0, denoted by F̄ag(x = 0).

Using (3.3) with (3.5a) and (3.5b), we find

F̄ag(x = 0)= ρω

π

∫ ks

0
|a(μ)|2 (μ2 + K2

)√
k2

s − μ2 dμ. (5.5)

The time-averaged energy flux through a large circular arc is calculated using the asymptotic expansion
(4.4) for Φag

F̄ag(r 	 0)= ρω

π
k2

s

∫ 0

−π/2
cos2(α)

(
K2 + k2

s sin2 α
) |a(−ks sinα)|2 dα, (5.6)

which coincides exactly with (5.5) upon changing variables to μ= −ks sinα, and thus verifies the
asymptotic form of Φag(r 	 0).

6. A calculated example

While the previous sections give some general results on evanescent and acoustic-gravity modes, and
the time-averaged energy fluxes, we can calculate these explicitly for the case of a line wave-maker of
Dirac delta function type φx(0, ζ )= U0δ(ζ + h). Note that the units of U0 are m2/s1. The coefficients of
the potential are readily integrated, and (3.4a–3.4c) yield

a0 = −iU0√
K2 + k2

s

e−Kh, (6.1a)

a(k)= U0

i
√−k2 + k2

s

k cos kh − K sin kh

K2 + k2
, (6.1b)

b(k)= −U0√
k2 − k2

s

k cos kh − K sin kh

K2 + k2
. (6.1c)

The potential is

Φ =Φg +Φag +Φe = 2KU0 e−Kh

i
√

K2 + k2
s

eKz e
i
(√

K2+k2
s x−ωt

)
(6.2a)

+ 2U0

iπ

∫ ks

0

(k cos kh − K sin kh)(k cos kz + K sin kz)(
K2 + k2

)√
k2

s − k2
e

i
(√

k2
s −k2x−ωt

)
dk (6.2b)

− 2U0

π

∫ ∞

ks

(k cos kh − K sin kh)(k cos kz + K sin kz)(
K2 + k2

)√
k2 − k2

s

e−
√

k2−k2
s x−iωt dk. (6.2c)

The behaviour of the potential amplitude of the evanescent modes for a choice of wave-maker depth
h = 4π m, can be seen in Fig. 1, in which (6.2c) was integrated numerically. The decay depicted here
for the compressible case is indistinguishable from that in the incompressible case. Here and in all
other examples ω= 1 s−1, g = 9.81 m/s2, U0 = 1 m2/s. This corresponds to a wavelength λ≈ 60 m, thus
h ≈ λ/5.
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HAVELOCK’S THEOREM AND ACOUSTIC-GRAVITY WAVES 7 of 16

(a) (b)

Fig. 1. Decay of the potential amplitudes (6.2c) of the evanescent modes for a δ-function wave-maker placed at a depth h = 4π m,
for ω= 1 s−1, g = 9.81 m/s2 and U0 = 1 m2/s. (a) Depicts the horizontal decay at different depths z, (b) the decay with depth at
different positions x away from the wave-maker.

Within the framework of this explicit example, we can also elucidate the angular dependence of
the amplitudes of the acoustic-gravity modes (4.4), retaining the notation for polar coordinates used in
Section 4.3. The wave-fronts and contour lines of constant wave height (see (4.4), (4.5a)) are depicted in
Fig. 2. For the frequencies under consideration (0.2<ω< 20 s−1), the phase is taken to be independent
of α, as K/ks 	 1 and the argument of a is π/2, whence γ = −π/4. Thus, the wave-fronts are circular
arcs. The wave height is given by

Γ√
r

=
√

2ks

πr
| sin(α)|U0

(
1 + Kh

K

)
, (6.3)

which may be seen to tend to zero as α tends to zero. Along each such curve (labelled for some sample

depths by kszi in Fig. 2), the value of the wave height is
√

2ksπ−1z−1
i U0K−1(1 + Kh) (cf. (6.3)). Curves

of constant wave amplitude are given by r = zi sin2 α. We see that along the circular wave-fronts, the
amplitude decreases as α→ 0. Note that the asymptotic representation used to plot this figure is valid
only for large distance from the origin, hence a neighbourhood of the origin must omitted from the
figure.

The averaged power input from the wave-maker, as given by (5.2) along the wall (i.e. with S =
{(x, z) | x = 0, z ∈ (−∞, 0]}) may also be evaluated for the prescribed line wave-maker, and yields

F̄ = F̄g + F̄ag = ρωKU2
0√

K2 + k2
s

e−2Kh + ρωU2
0

π

∫ ks

0

(k cos kh − K sin kh)2(
K2 + k2

)√
k2

s − k2
dk, (6.4)

showing the distribution of the power in the gravity modes and the acoustic-gravity modes in the first
and second term, respectively. The ratio F̄ag/F̄g is visualized in Fig. 3, and demonstrates the growing
importance of the acoustic-gravity modes compared with gravity modes with increasing depth of the
wave-maker. For higher frequencies, the relative importance of the acoustic-gravity modes with depth
increases faster still.
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8 of 16 R. STUHLMEIER AND M. STIASSNIE

Fig. 2. Schematic depiction of contour lines of constant wave height Γ/r1/2
i (solid curves) for different kszi 	 1, and the circular

arcs of the wave-fronts (dashed lines) of the acoustic-gravity waves. The domain considered (outside the innermost dotted arc) is
such that the asymptotic representation (4.4) is valid.

Fig. 3. Graph of the ratio F̄ag/F̄g with depth h of the wave-maker, for ω= 1 s−1, g = 9.81 m/s2 and depth varying from 0 to 50.
F̄ag/F̄g = 1 for h = 43.9 m (dotted line).

The integral expression for F̄ag may be evaluated approximately (assuming k � ks � K) to yield

F̄ag ≈ ρU2
0 g

4ωc2
s

(1 − Kh)2, (6.5)

which coincides with the time-averaged power of the acoustic-gravity modes φag through a quarter-
circle with large radius r, by the considerations of the previous section.

7. Comparison with limiting cases cs → ∞ and g → 0

As we have seen from the structure of the solution in Section 4 and the explicit calculations in Section 6,
the relative importance of the acoustic-gravity and surface-gravity components changes with depth. This
leads one to consider the relation between the physical scenario presented here, combining the effects
of gravity and compressibility, and two natural limiting problems that arise from our formulation: the
well-known incompressible problem where the elasticity of the fluid is neglected (cs → ∞) leading to a
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change of the field equation (2.2) to
Δφ = 0, (7.1)

with the solution given in (3.1–3.2b).
The other limit is the pure-acoustic problem where gravity is neglected (g → 0, hence K → ∞) and

the surface condition (2.3) becomes
φ = 0 on z = 0. (7.2)

(See Jensen et al., 2011 for the formulation of this canonical boundary value problem in ocean-
acoustics). For the pure-acoustic case, separation of variables again allows a treatment of the problem. In
this case, the completeness relation (cf. Appendix A) for the z-separated problem is simply the Fourier
sine transform, which yields a solution

φ(x, z)= 2

π

∫ ks

0
a(k) eix(k2

s −k2)
1/2

sin(kz) dk + 2

π

∫ ∞

ks

b(k) e−x(k2−k2
s )

1/2

sin(kz) dk, (7.3)

with

a(k)= −i√
k2

s − k2

∫ 0

−∞
U(z) sin(kζ ) dζ , (7.4)

b(k)= −1√
k2 − k2

s

∫ 0

−∞
U(z) sin(kζ ) dζ . (7.5)

The lack of surface-gravity waves excepted, we find an unsurprising resemblance to the evanescent
(b(k)) and propagating (a(k)) terms found in the acoustic-gravity setting (cf. (3.3)). An analysis of
the asymptotic behaviour of these progressive acoustic-only modes along the lines of (4.4) reveals that
the asymptotics are qualitatively identical. A numerical comparison of potential amplitudes for the two
types of propagating acoustic waves (with and without gravity) demonstrates that, as the depth of the
wave-maker increases and the relative importance of the gravity components declines, so too do the
acoustic-gravity and pure-acoustic waves grow to resemble one another.

Figure 4 compares the three situations in terms of the time-averaged energy flux, i.e. the total power
input to the wave-maker. The solid curve represents the total power input to a wave-maker placed at
depth h for the problem with both compressibility and gravity effects, and shows the sum F̄ = F̄g + F̄ag

in (6.4). The dashed line depicts the time-averaged energy flux for the propagating gravity modes φg of
(3.1). Finally, the dotted line depicts the same for pure-acoustic modes (7.3).

It may be observed that the pure-gravity and acoustic-gravity problems come to resemble one
another as the depth of the wave-maker decreases, and begin to diverge for greater wave-maker depths,
as the relative importance of the gravity modes wanes and the acoustic components of the combined
acoustic-gravity solution become predominant (see also Fig. 3 for a direct comparison). With increas-
ing depth, the pure-acoustic and acoustic-gravity problem converge. As the depth of the wave-maker
h → ∞, F̄a and F̄g+a approach one another asymptotically.

8. Discussion

We have presented a treatment of the classical wave-maker problem, taking into account the effects of
compressibility, and putting particular emphasis on understanding the acoustic-gravity modes arising
therein. These results may be brought to bear on general problems of wave-structure interaction, where
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10 of 16 R. STUHLMEIER AND M. STIASSNIE

Fig. 4. Comparison of time-averaged energy fluxes for pure-gravity, pure-acoustic and acoustic + gravity cases, and δ-function
wave-makers, plotted vs. depth h of the wave-maker, for ω= 1 s−1, g = 9.81 m/s2, U0 = 1 m2/s, cs = 1500 m/s and depth varying
from 0 to 100.

the asymptotics and behaviour described above may be considered prototypical for certain 2D configu-
rations. In the balance of this section, we compare our results with the better known finite depth solution,
and more importantly discuss the extension of our new solution to higher frequencies, which requires
the introduction of surface tension. We subsequently make some brief comments on applications of
acoustic-gravity waves.

8.1 Finite depth

The investigation of acoustic-gravity waves in infinite depth, presented here for the first time, may be
compared with the better known finite depth case. There, the boundary value problem (2.2), (2.3) is
supplemented by the bottom boundary condition

φz = 0 on the bed z = −H . (8.1)

The resulting regular Sturm–Liouville problem for the z-variable leads to the well-known expansion of
the potential in terms of eigenfunctions (which may be contrasted with the situation in infinite depth as
presented in Appendix A):

f0(z)=
√

2 cosh(k0(z + H)) ∗ (H + K−1 sinh2(k0H)
)−1/2

,

fn(z)=
√

2 cos(kn(z + H)) ∗ (H − K−1 sin2(knH)
)−1/2

,

corresponding to the eigenvalues ki, i = 0, 1, 2, . . . given by

k0 tanh(k0h)= K, kn tan(knh)= −K

(see Mei et al., 2005). The coefficients in the eigenfunction expansion

φ(x, z)= a0(x)f0(z)+
∞∑

n=1

an(x)fn(z) (8.2)
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HAVELOCK’S THEOREM AND ACOUSTIC-GRAVITY WAVES 11 of 16

are obtained from the Helmholtz equation, which yields right- and left-going progressive waves

a0(x)= α0 ei(k2
0+k2

s )
1/2

x + β0 e−i(k2
0+k2

s )
1/2

x, (8.3)

as well as ostensibly ‘evanescent’ modes

an(x)= αn e(k
2
n−k2

s )
1/2

x + βn e−(k2
n−k2

s )
1/2

x. (8.4)

It is in these latter that the effects of compressibility come to bear most significantly—the eigenvalues
kn ∈ R

+ may be ordered as a monotonically increasing series, with knh ∈ ((n − 1/2)π , nπ), so that for a
given fluid depth h and frequency ω there may be finitely many acoustic-gravity waves corresponding to

k2
n − k2

s < 0. (8.5)

If the depth h is sufficiently large to allow such modes, the potential of the N (right-going) acoustic-
gravity waves may be written

Φ+
ag(x, z)=

N∑
n=1

√
2αn(

h − K−1 sin2(knh)
)1/2 cos

(√
k2

s − k2
nx − ωt

)
cos (kn(z + h)) . (8.6)

Each of these acoustic-gravity modes may be rewritten as a sum of two waves, whose wavevector has
magnitude ks, and which propagate at an angle

θ = ± arctan

(
kn√

k2
s − k2

n

)
(8.7)

to the horizontal x.
This finite number of acoustic-gravity modes in finite depth contrasts markedly with the continuum

of such modes, for wavenumbers k between 0 and ks, found in the case of infinite water depth. Moreover,
while in finite depth the energy of the acoustic-gravity waves is trapped in the ‘duct’ between surface
and bed, the infinite depth acoustic-gravity modes propagate only radially outward and downward into
the fluid domain; for large distances from the wave-maker their amplitudes decay as r−1/2.

8.2 Effects of surface tension

While we have here focused on gravity waves (0.2<ω< 20 s−1), for higher frequencies—leading to
waves with a wavelength much<10 cm—the effects of surface tension are expected to become increas-
ingly important. The main change comes from adding to the surface dynamic boundary condition a term
dependent on the surface curvature, so that it takes the form

ρΦt + ρgη − Tηxx = 0 on z = 0,

where T is the surface tension (a reference value for water at 20◦C is T = 0.073 N/m, Vargaftik et al.,
1983). Combining this with the kinematic boundary condition ηt =Φz, and the wave equation (2.1)
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12 of 16 R. STUHLMEIER AND M. STIASSNIE

leads to

Φtt + gΦz − T

ρ

(
Φttz

c2
s

−Φzzz

)
= 0 on z = 0.

The resulting boundary value problem for the periodic line wave-maker, written in terms of φ, is
stated as

φxx + φzz + k2
sφ = 0 for z � 0, x> 0, (8.8)

φx(0, z)= U0δ(z − h) for h ∈ (−∞, 0), (8.9)

φz + Mφzzz = Kφ on z = 0, (8.10)

where we neglect a small correction Mk2
s � 1 to the term φz in (8.10). Here K =ω2/g, M = T/ρg and

the dispersion relation with surface tension becomes

K = κ
(
1 + Mκ2

)
. (8.11)

This corresponds to the problem of forced waves with surface tension in incompressible water as treated
by Rhodes-Robinson (1971).1

The solution to (8.8–8.10) is given by

φ(x, z)= 2
(
1 + Mκ2

)
a0 eκz eix

√
κ2+k2

s + 2

π

∫ ks

0
a(k) eix

√
k2

s −k2
ψ̃(k, z) dk

+ 2

π

∫ ∞

ks

b(k) e−x
√

k2−k2
s ψ̃(k, z) dk

for ψ̃(k, z)= (k(1 − Mk2) cos kz + K sin kz). The coefficients are:

a0 = −iκU0 eκh(
1 + 3Mκ2

)√
κ2 + k2

s

, (8.12a)

a(k)= −iU0√
k2

s − k2
· ψ̃(k, −h)

k2
(
1 − Mk2

)2 + K2
, (8.12b)

b(k)= −U0√
k2 − k2

s

· ψ̃(k, −h)

k2
(
1 − Mk2

)2 + K2
. (8.12c)

The verification of (8.8) and (8.10) is immediate, and the verification of the wave-maker condition (8.9)
is identical to that presented in Rhodes-Robinson (1971). Indeed, for cs → ∞, the solution of Rhodes-
Robinson is recovered, and for T → 0 we find that of Section 6.

1 In Rhodes-Robinson, the boundary value problem is supplemented by a condition specifying the free-surface slope at the
wave-maker. We consider the case of a submerged line wave-maker, and assume the free-surface slope at the boundary x = 0 is
zero.
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If we consider waves with frequencies 20<ω< 2000 s−1, we find very good numerical agreement
between the evanescent modes with and without surface tension. The asymptotics for the acoustic-
gravity modes (4.4) are identical save for a factor Mk2

s sin2 α that appears in

Γ =
√

2

ksπ
ks cos(α)

√
K2 + (ks sinα

(
1 − Mk2

s sin2 α
))2

, (8.13a)

γ = − arctan

(
K

ks sinα
(
1 − Mk2

s sin2 α
)
)

− π

4
+ Arg(a(−ks sinα)) (8.13b)

(cf. (4.5a), (4.5b)). This factor may safely be neglected, as Mk2
s � 1 for the above-mentioned physical

values of ω.

8.3 Applications of acoustic-gravity theory

Having presented the linear wave-maker theory in infinite depth without the usual neglect of the com-
pressibility of water, one may ask what regions of applicability exist for these new waves. The contri-
butions of acoustic-gravity waves to generating microseisms in the sea-bed were first investigated in
the mid-20th century by Longuet-Higgins (1950), and their role in generating low-frequency oceanic
noise has been the focus of considerable recent study (see e.g. Ardhuin et al., 2013 which also com-
pares with measurements, and the discussion in Kadri, 2015). The connection between tsunamigenic
earthquakes and acoustic-gravity waves generated in connection with tsunami dates back at least to
Yamamoto (1982), and in recent years some direct measurements of these compressibility waves have
been made (see, e.g. Nosov et al., 2007). The idea of using such earthquake-generated acoustic-gravity
waves to improve tsunami warning systems has also been the focus of much recent work (Stiassnie,
2009; Eyov et al., 2013).

Just as Havelock’s wave-maker theorem in incompressible flow provides a basis for the analysis of
problems in wave–structure interaction (Ursell, 1947, 1948), so it is to be hoped that the utility of our
expansion in compressible flow will extend beyond the simple example of the δ-function wave-maker
we have used as a numerical example. In particular, we have shown the evident but otherwise not quan-
titatively assessable fact that some of the energy in any instance of wave–structure interaction will go
into the generation of acoustic-gravity waves, in a depth- and frequency-dependent manner. The rela-
tionship between compressibility and gravity, and the relative importance of each in different physical
settings which we have touched upon in Section 7 provide interesting avenues for future research.
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Appendix A. Derivation of the new solution

We describe how the solution to the infinite depth wave-maker problem with compressibility is derived,
using essentially the same techniques that lead to the analogous, incompressible solution. Note that
separation of variables in the problem (2.2), (2.3) leads to a singular Sturm–Liouville problem of limit-
point type. Defining ψ(k, z)= k cos(kz)+ K sin(kz), the analogue of Parseval’s equality yields

δ(z − ζ )= 2K eKz eKζ + 2

π

∫ ∞

0

1

k2 + K2
ψ(k, z)ψ(k, ζ ) dk, (A.1)
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exactly as found in the derivation of Havelock’s wave-maker theorem for pure-gravity waves (see Fried-
man, 1990). This yields the general expansion for the potential

φ(x, z)= 2K eKzA0 + 2

π

∫ ∞

0
A(k)(k cos(kz)+ K sin(kz)) dk, (A.2)

where

A0(x)=
∫ 0

−∞
φ(x, ζ ) eKζ dζ , (A.3)

A(x; k)=
∫ 0

−∞

φ(x, ζ )

K2 + k2
(k cos(kζ )+ K sin(kζ )) dζ . (A.4)

Asking that φ above fulfill the Helmholtz equation (2.2) implies

A0xx +
(

K2 + ω2

c2
s

)
A0 = 0, (A.5)

Axx −
(

k2 − ω2

c2
s

)
A = 0. (A.6)

The first of these has a general solution

A0(x)= a0 eix(K2+ω2/c2
s)

1/2 + b0 e−ix(K2+ω2/c2
s)

1/2

(A.7)

which clearly represents progressive waves moving rightward (a0) and leftward (b0). The general solu-
tion to the second equation is

A(x; k)= a(k) ex(k2−ω2/c2
s )

1/2 + b(k) e−x(k2−ω2/c2
s)

1/2

. (A.8)

The Sommerfeld radiation condition then yields (3.3). The Neumann boundary conditions for the wave-
maker φx(0, z)= U(z) yields

A0x(0)=
∫ 0

−∞
φx(0, ζ ) eKζ dζ ,

Ax(0; k)=
∫ 0

−∞

φx(0, ζ )

K2 + k2
(k cos kζ + K sin kζ ) dζ ,

which may be used to specify the coefficients a0, a(k) and b(k).

Appendix B. Derivation of the asymptotic expression for acoustic-gravity waves

We present the derivation of the asymptotics for the acoustic-gravity modes (4.3). Recall

φag(x, z)= 2

π

∫ ks

0
a(k) eix(k2

s −k2)
1/2

(k cos(kz)+ K sin(kz)) dk. (B.1)
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Decomposing the cos and sin terms into exponentials, we find the above equal to

φag = 1

π

(
φ−

ag + φ+
ag

)
= 1

π

(∫ ks

0
a(k)(k − iK) eikz+i

√
k2

s −k2xdk (B.2)

+
∫ ks

0
a(k)(k + iK) e−ikz+i

√
k2

s −k2x dk

)
. (B.3)

We use the substitution √
k2

s − k2 =μ cos θ , k =μ sin θ ,

write x and z in polar coordinates x = r cosα and z = r sinα, and consider the domain α ∈ (−π/2, 0).
After applying the formulas for products of trigonometric functions

φ−
ag =

∫ π/2

0
f −(θ) eirH−(θ) dθ , (B.4)

φ+
ag =

∫ π/2

0
f +(θ) eirH+(θ) dθ , (B.5)

where we define f ±(θ)= a(μ sin θ)(μ sin θ ± iK)μ cos θ , and H±(θ)=μ cos(θ ± α). We seek to apply
the method of stationary phase (see Miller, 2006) to evaluate the behaviour of these integrals for large
values of r, and to this end examine the derivatives of H± :

d

dθ
H±(θ)= −μ sin(θ ± α).

We see that φ−
ag has no points of stationary phase, and thus the leading-order contributions will come

from the stationary phase points of φ+
ag. Indeed, for any α, the point θ = −α is a point of stationary

phase, and the second derivative of H+ is negative.
The leading terms in the asymptotic expansion for large radius r are thus

φag ∼ 1

π

(
2π

r|H+(2)(−α)|
)1/2

a(μ sin(−α))(μ sin(−α)+ iK) · μ cos(−α) eirH+(−α)−iπ/4

= 1

π

(
2π

rks

)1/2

a(−ks sin(α))(iK − ks sin(α)) · ks cos(α) eirks−iπ/4,

leading to (4.4).
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