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Abstract. We investigate the Chilean tsunami of 1960 to determine the role
of KdV dynamics. On the basis of the scales involved, and making use of recent

advances, we put on a rigorous foundation the fact that KdV dynamics were

not influential in this catastrophic event.

1. Introduction. Tsunami are without a doubt among the most infamous and
least understood natural disasters today. Often referred to in the popular literature
by the misnomer “tidal wave”, tsunami are generated by large displacements in
the sea level, often via seismic activity. Most tsunami - a term from the Japanese
for “harbor wave” - are caused by vertical movement along a break in the earth’s
crust. Other causes can include volcanic collapse, subsidence, as well as landslides.
Contrary to popular imagination, a tsunami need be neither large nor destructive
- classification is based on origin of the wave or wave period rather than on size.
Though between 1861 and 1948 there were more than 15,000 earthquakes recorded,
there were only 124 tsunami [3]. Indeed, off the west coast of South America, 1,098
earthquakes have led to only 20 recorded tsunami [3].

As waves of such great scale, generated by complex movements of the earth, and
with such devastating consequences for populations surrounding the world’s oceans,
accurate modeling of tsunami is of utmost importance. One question which has been
raised repeatedly is whether the behavior of tsunami at sea can be described by the
Korteweg-de Vries equation (see the reviews [27], [31], and [30]). We will pursue this
question for one of the greatest tsunami of recorded history - generated by a series
of earthquakes in southern Chile on May 22, 1960 - as it propagated from Chile to
Hawai’i. These earthquakes, among them the largest ever recorded, resulted from a
rupture about 1000 km long and 150 km wide along the fault between the Nazca and
South American plates, at a focal depth of 33 km. The principal shock occurring
on May 22 at 19:11 GCT registered at 9.5 on the moment magnitude scale, and led
to changes in land elevation ranging from 6 m of uplift to 2 m of subsidence - which
has been modeled to correspond to an average dislocation of 20 m along the fault,
with peaks of more than 30 m [2]. This subsidence extended as far as 29 km inland,
resulting in some 10 km2 of forest around the Ŕıo Maulĺın being submerged by the
tides and consequently defoliated [4].

Not only was the principal earthquake at 39.5◦S, 74.5◦W especially powerful,
it generated tsunami with an average run-up of 12.2 m and a maximal run-up on
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the adjacent Chilean coast of 25 m. Over the course of the next day, a number of
tsunami wreaked havoc upon the Pacific, taking the lives of more than 2000 people
and causing millions of dollars in damages. The initial wave traveled between 670
and 740 km/h, with a wavelength of between 500 - 800 km and a height in the
open ocean of only 40 cm [3], [20]. Borrowing an example from [30], sitting in a
boat in the Pacific, the tsunami wave would take between 45 min to an hour to
pass one by while raising the boat by less than one centimeter per minute - hardly
noticeable on the open sea. Nevertheless, the tsunami reached amplitudes of 7 m in
Kamchatka and 10.7 m in Hilo, Hawai’i, 1 where it caused widespread destruction
after traveling 10,000 km in just under 15 hours.

2. Modeling. The Chilean tsunami of 1960 had wavelengths in excess of 500 km
and amplitudes of less than one meter [3] while propagating over the Pacific Ocean,
which, though the deepest of the world’s oceans, has an average depth of only 4.3
km. These scales lend themselves to modeling with shallow-water long-wave theory,
i.e. water depth is small compared to wavelength and depth is large compared
to amplitude. We note also that the depth of open ocean across which the 1960
tsunami traveled is relatively uniform, and given that the rupture length exceeded
the wavelength of the resulting tsunami, it is reasonable to assume the waves as two-
dimensional; this is borne out (at least between Chile and Hawai’i) by consulting
travel time charts (see [3]).

2.1. The governing equations. Following e.g. [22] we introduce the governing
equations for water waves, and then show how these apply specifically to the tsunami
of 1960. Since we consider two-dimensional waves, let x be the direction of wave
propagation, and y the vertical. Let u denote velocity in x-direction, v that in
y-direction. The density ρ, we assume to be constant, for simplicity setting ρ ≡ 1.
The pressure P (x, y, t) as well as u(x, y, t) and v(x, y, t) we assume to be suitably
differentiable functions. Finally g denotes the acceleration of gravity.
The equation of mass conservation arises from the stipulation that the density of
water be constant, giving

ux + vy = 0, (1)
where subscripts denote partial differentiation with respect to x resp. y. Neglecting
viscosity, we use the Euler equations

Du

Dt
= −∂P

∂x
,

Dv

Dt
= −∂P

∂y
− g, (2)

where
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

is the so-called material derivative. We will further consider only irrotational flow
- meaning that we set the vorticity, which measures a local spin of the fluid, equal
to zero:

uy − vx = 0 (3)
Although in real water flows, vorticity is rarely absent, it is usually small enough
that it does not play a major role in water wave dynamics unless we wish to account
for the presence of underlying non-uniform currents [25, 24, 13, 7]. As it is, for the
rigorous results we rely on below, irrotational flow is a prerequisite.

1http://wcatwc.arh.noaa.gov/web_tsus/19600522/runups.htm
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We write y = h0 +H(x, t) for the free surface, where h0 is an average depth for
the water under consideration, and denote the flat bed by y = 0. Note that it is
possible to include an analysis of these dynamics with a non-flat bed as in [12, 21],
provided the variations in bottom topography are limited appropriately. In order to
make the derivations that follow as transparent as possible, we will restrict ourselves
to the case of a flat bed.

To decouple the motion of the water from that of the air, we introduce the
dynamic boundary condition

P = Patm on the free surface y = h0 +H(x, t). (4)

Further we assume that particles comprising either of the two fluid surfaces (the
free surface and the bed) must stay there - physically this means that the bed
is impenetrable and that no particles leave the body of water, implying therefore
that velocities along these surfaces have no normal component. This is called the
kinematic condition:

v = Ht + uHx on y = h0 +H(x, t) (5)
v = 0 on y = 0 (6)

These equations together comprise the governing equations for water waves.

2.2. Non-dimensionalization and scaling. Roughly speaking, one might say
that nonlinear phenomena arise through the interaction of physical parameters on
scales of differing magnitude. As such, given that we are working with physical
variables, in order to compare magnitudes meaningfully, the first step is to get rid
of their units. Experience has borne out the fact that nonlinear problems are often
fruitfully tackled by approximation - by introducing special scales to an otherwise
too expansive problem and then considering regimes corresponding to certain values
of these scales. Simpler approximate equations in such regimes permit an in-depth
analysis of waves enjoying special attributes (such as the existence of solitons [8, 23]
or stability properties [14].)

2.2.1. Non-dimensionalization. In keeping with this, we introduce h0 as the typical
depth of the water and λ the typical wavelength. These two scales provide the basis
for a nondimensional version of the governing equations. The characteristic speed
for long gravity waves is taken to be

√
gh0, and together with the wavelength λ

this gives us a time scale for horizontal propagation of the wave, λ/
√
gh0, as well

as horizontal speed. Care must be taken with the vertical speed v in order to be
consistent with (1). These considerations lead us to the following non-dimensional
variables, which we denote with the usual variable names:

x −→ λx y −→ h0y t −→ λ

c
t c =

√
gh0 (7)

u −→ cu v −→ cv
h0

λ
(8)

Accordingly, we transform the pressure P into a perturbation of the hydrostatic
pressure as follows

P = Patm + g(h0 − y) + gh0p, (9)
where p is a new non-dimensional pressure variable. Lastly we set

H(x, t) = aη(x, t), (10)

where η is the nondimensional surface profile and a is a typical amplitude.
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The components of the Euler equation (2) under these transformations become
Du

Dt
= −∂p

∂x
, δ2

Dv

Dt
= −∂p

∂y
, (11)

where δ = h0/λ is the long wavelength or shallowness parameter. Owing to our
abuse of notation, the equation of mass conservation (1) remains unchanged. The
irrotationality condition (3) becomes

uy − δ2vx = 0. (12)

The second characteristic parameter enters via the transformation of the boundary
conditions in accordance with (7) - (10):

p = εη on y = 1 + εη(x, t), (13)

v = ε(
∂η

∂t
+ u

∂η

∂x
) on y = 1 + εη(x, t), (14)

v = 0 on y = 0, (15)

where the ε = a/h0 is the so-called amplitude parameter.

2.2.2. Scaling. At this point, we note that ε and δ between them determine the
type of water wave problem under consideration. Looking at the surface boundary
conditions, we see that v and p are both proportional to ε, the wave amplitude. This
is sensible, since as ε → 0 the vertical velocity v → 0 and of course the pressure
perturbation p→ 0; the free surface is perfectly flat. Taking advantage of this, we
define a set of scaled variables

p→ εp, v → εv, u→ εu, (16)

where u is scaled similarly for consistency (note that these formal considerations
are supported by rigorous results - see [15, 5, 32]). This leads to the transformation
of the system of equations (11) with D

Dt = ∂
∂t + ε(u ∂

∂x + v ∂
∂y ), which we can write

explicitly as

ut + ε(uux + vuy) = −px, (17)

δ2(vt + ε(uvx + vvy)) = −py. (18)

The equation of mass conservation (1) again remains unchanged, as does the nondi-
mensional irrotationality condition (12).

The boundary conditions (13) - (15) become

p = η on y = 1 + εη (19)
v = ηt + εuηx on y = 1 + εη (20)
v = 0 on y = 0 (21)

2.2.3. Approximate Equations. We now have a series of equations which depend
on two parameters ε and δ which measure contributions of amplitude, respectively
wavelength, to the problem under consideration. The most common approximations
made are ε→ 0 for fixed δ and δ → 0 for fixed ε. These are known as the linearized
problem and shallow-water (or long wave) problem respectively. As noted above,
in the first approach, the hitherto unknown free surface becomes the surface y = 1,
and in a first approximation, we have a linear problem with dispersive effects. In the
latter, a glance at (18) shows that the pressure becomes independent of y; dispersive
effects are neglected. For more details see e.g. [22].
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While these approximations have been used extensively (and sometimes with
some abandon) in the history of water-wave problems, the question remains to what
extent any formal asymptotic model can give us relevant results for water waves.
Two questions arise: does an asymptotic model provide a good approximation of a
solution to the Euler equations, and is the time scale of the model applicable.

Our goal of understanding the dynamics of the Korteweg-de Vries equation
(henceforth abbreviated KdV) and its possible application to the Chilean tsunami
of 1960 must therefore proceed cautiously. Roughly, we understand that the KdV
describes a balance between nonlinearity and dispersion, which means that we will
need to retain both parameters ε and δ to some order in the above equations.

We note that the parameters occur in our equations to order ε and δ2 - it turns
out that these are precisely the orders that must be retained. It is possible to
identify the regime within which a certain model applies, such as via the Ursell
number U = aλ2/h3

0 = ε/δ2 [33]. An Ursell number U = O(1) corresponds to the
classical approach of choosing the parameters such that δ2 = O(ε) as ε→ 0. It may
also be pointed out that for any δ as ε → 0, there should always exist a region of
space and time where this balance occurs [10], [11] - although no rigorous results
exist to corroborate this. However, we will stick to the classical point of view, for
which rigorous underpinnings are available.

2.3. The Korteweg-de Vries equation (KdV). Starting from the equations
(17) - (21) we will proceed to derive KdV (introduced in [26]), following the expo-
sition in [22]. As discussed above, we take the classical approach and consider a
special choice of parameters, namely δ2 = O(ε) as ε → 0. In accordance with this
choice, we transform the independent variables

x→ δ√
ε
x, t→ δ√

ε
t, y → y. (22)

As above, we require that the condition of mass conservation be satisfied, and so
must transform

v →
√
ε

δ
v, u→ u, η → η, p→ p (23)

accordingly. Then the equations of motion (17) - (21) along with mass conservation
(1) and irrotationality (12) now appear with δ scaled out in favor of ε:

ut + ε(uux + vuy) = −px ε(vt + ε(uvx + vvy)) = −py (24)
ux + vy = 0 (25)
uy − εvx = 0 (26)

p = η on y = 1 + εη (27)
v = ηt + εuηx on y = 1 + εη (28)
v = 0 on y = 0 (29)

Now we let ε → 0 and observe that for a first order approximation (24) implies
ut + px = 0 as well as that p is independent of y. Therefore (27) implies that p = η
everywhere and (26) that u is independent of y. It then follows from (25) that

v = −yux, (30)

which satisfies the boundary condition (29). Furthermore, since v = ηt on y = 1,
(30) implies ηt = −ux or ηt + ux = 0. This together with mass conservation (25)
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means that η fulfills the wave equation

ηtt − ηxx = 0. (31)

We know that the wave equation has right-running as well as left-running solutions
(cf. [17]), and will follow the right-running waves, consistent with the introduction
of the characteristic variable ξ = x− t. We also introduce a slow time scale

τ = εt (32)

in order to treat the far-field region, where we consider the regime for ξ = O(1) and
τ = O(1). In view of this, we can rewrite the equations of motion (24) - (29) as
follows:

− uξ + ε(uτ + uuξ + vuy) = −pξ ε(−vξ + ε(vτ + uvξ + vvy) = −py (33)
uξ + vy = 0 (34)
uy − εvξ = 0 (35)

p = η on y = 1 + εη (36)
v = −ηξ + ε(ητ + uηξ) on y = 1 + εη (37)
v = 0 on y = 0 (38)

We would now like to determine an approximate solution in terms of an asymptotic
series Ansatz in ε (for background cf. [29]) by introducing the series expansions:

η(ξ, τ, ε) ∼
∑
n≥0

εnηn(ξ, τ) u(ξ, τ, y, ε) ∼
∑
n≥0

εnun(ξ, τ, y) (39)

v(ξ, τ, y, ε) ∼
∑
n≥0

εnun(ξ, τ, y) p(ξ, τ, y, ε) ∼
∑
n≥0

εnpn(ξ, τ, y) (40)

Notice, however, that we have a problem in (36) and (37): ε appears both in
the coefficients as well as the arguments, making it impossible to equate powers of
epsilon as we would like to do. To this end, we perform a transfer of the boundary
conditions from y = 1 + εη to y = 1 by expanding p(ξ, τ, y), u(ξ, τ, y) and v(ξ, τ, y)
in Taylor series about y = 1 as follows:

p(ξ, τ, 1 + εη) = p(ξ, τ, 1) + py(ξ, τ, 1)εη +
1
2!
pyy(ξ, τ, 1)ε2η2 + . . . (41)

Substitute this into (36) and apply the series expansions for η and p in (39) and
(40) to get

p0 + εp1 + εη0p0y = η0 + εη1 +O(ε2). (42)

Analogously substitute the Taylor series for u, v into (37) and expand to get:

v0 + εv1 + εη0v0y = −(η0ξ + εη1ξ) + ε(η0τ + u0η0ξ) +O(ε2) (43)

At leading order (ε0) (33) - (38) then reduces to:

u0ξ = p0ξ p0y = 0 (44)
u0ξ + v0y = 0 (45)

u0y = 0 (46)
p0 = η0 on y = 1 (47)

v0 = −η0ξ on y = 1 (48)
w0 = 0 on y = 0 (49)
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This system is analogous to that in (24) - (29) above - and the analogous arguments
lead to the fact that p0 = η0, u0 = η0 + C, C a constant which we may assume to
be zero, and v0 = −yη0ξ.

At order ε1 we get:

u0τ + u0u0ξ + v0u0y − u1ξ = −p1ξ (50)
−v0ξ = −p1y (51)
u1ξ + v1y = 0 (52)
u1y − v0ξ = 0 (53)

p1 + η0p0y = η1 on y = 1 (54)
v1 + η0v0y = −η1ξ + η0τ + u0η0ξ on y = 1 (55)

v1 = 0 on y = 0 (56)

Recall that we know from the first order approximation:

p0 = η0 u0 = η0 v0 = −yη0ξ
p0y = 0 u0y = 0 v0y = −η0ξ

Taking this into account, and in view of the boundary conditions in the second
approximation it is easy to see

p1 = η1 on y = 1 and p1 =
1− y2

2
η0ξξ + η1.

Now we would like to eliminate η1 and get an equation solely in η0. Notice that

v1y = −u1ξ = −p1ξ − u0τ − u0u0ξ =
y2 − 1

2
η0ξξξ − η1ξ − u0τ − u0u0ξ =

=
y2 − 1

2
η0ξξξ − η1ξ − η0τ − η0η0ξ.

Integrating with respect to y yields

v1 =
y3

6
η0ξξξ − y(

1
2
η0ξξξ + η1ξ + η0τ + η0η0ξ),

which on the free surface y = 1 is equal to −η1ξ + η0τ + 2η0η0ξ, whereupon the
factor −η1ξ cancels and we have:

2η0τ + 3η0η0ξ +
1
3
η0ξξξ = 0, (57)

the Korteweg-de Vries equation. Much has been written about the dynamics as-
sociated with the KdV (see e.g. [16]), but we must return to the question of what
solutions of the KdV can tell us about water waves - especially whether the govern-
ing equations have a solution on the time-scale of our asymptotic model. Recent
results in [1] answer this question in the affirmative.

In the regime ε = O(δ2) within which we derived the KdV, given a solution
ζ+(ξ, τ) of 2ζ+

τ + 3ζ+ζ+
ξ + 1

3ζ
+
ξξξ = 0 with initial conditions given by η as in the

governing equations (17) - (21), [1] ensures that, given ε0 > 0 there exists a T > 0
such that, for k > 0 and ε ∈ (0, ε0) we have

|η − ζ+| ≤ kε2t, 0 ≤ t ≤ T

ε
, x ∈ R. (58)
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3. Application to the 1960 Chilean tsunami. In light of the calculations
above, we see that a KdV-balance can occur in regions where ξ and τ are of order
1 i.e.

x− t = O(1), τ = O(1). (59)
Simply identifying the regime does not suffice however, to see KdV dynamics -
indeed only at certain length scales can these dynamics appear. Recall that τ = εt
and the non-dimensionalisation (7) performed in 2.2.1. The above then transforms
into

x− t
√
gh0

λ
= O(1),

εt
√
gh0

λ
= O(1). (60)

This gives us a length scale for the KdV balance of

x = O(
λ

ε
). (61)

We note that this length scale was long thought to be x = O(h0/ε), (cf. the classical
results [18], [19]) as is also espoused in the recent survey [30], but (61) provides the
correct scale - see also the discussion in [6].

Thus far we have identified a regime, ε = O(δ2), but what does this mean in
practical terms? Given that we need to check whether this regime holds based on
real-world data, we take the approach that O(1) allows for deviation by a factor of
ten in either direction, as is usually assumed in the hydrodynamical literature (see
e.g. [28]). Thus

10−1 ≤ ε

δ2
≤ 10

is a good realization of the KdV regime. Recall that the definitions ε = a/h0,
δ = h0/λ mean that the above is

10−1h3
0

a
≤ λ2 ≤ 10h3

0

a
, (62)

where we take h0 to be 4.3 km. Taking a = 0.4 m (cf. [3]), we see that this yields a
realistic range of wavelengths between 140 and 1400 km. So far we are in the right
regime to see KdV dynamics, but need to find a bound for the distance in which we
expect a balance of nonlinearity and dispersion to appear. Given that we consider
the 1960 tsunami only between Chile and Hawai’i, a distance of about 104 km, (61)
means that we need

λ

ε
< 104 km. (63)

Together with (62) we can eliminate a herein to get

λ3 < 105h2
0 km ≈ 8× 106 km

or
λ < 200 km. (64)

However, measurements place the wavelength of the tsunami of May 22, 1960 be-
tween 500 - 800 km [3] making it unlikely that KdV dynamics played a role. This is
further supported by the fact that the first two tsunami waves reaching Hilo, Hawai’i
were smaller than the third, most destructive wave - something which should not
occur if KdV dynamics were significant for the leading waves of the tsunami. We
have deliberately used the wavelength λ because of the relative ease of measurement
and error tolerance compared with measuring amplitude. An argument based on
the amplitude can be found in [9] and [6]. The propagation distances involved in
the 1960 Chilean tsunami are the largest possible on earth, making it one of the
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best candidates among teleseismic tsunami for the appearance of a KdV balance.
Nevertheless, previous studies of this and other large teleseismic events (cf. the re-
cent investigations of the 2004 tsunami [11], [10] concluding that KdV theory did
not play a role in this event) support our view that the Chilean tsunami of 1960,
though the most widespread ever to affect the Pacific Basin, was not governed by
KdV dynamics.
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