Ordinary Differential Equations - 10413181

Homework No. 12

1. Consider the vectors

$$
\mathbf{x}^{1}(t)=\binom{t}{1}, \mathbf{x}^{2}(t)=\binom{t^{2}}{2 t}
$$

(a) Compute the Wronskian of \mathbf{x}^{1} and \mathbf{x}^{2}.
(b) In what intervals are these two vectors linearly independent?
2. Consider the vectors

$$
\mathbf{x}^{1}(t)=\binom{t}{1}, \mathbf{x}^{2}(t)=\binom{e^{t}}{e^{t}}
$$

and answer the questions posed in 1.
3. Given the system

$$
\mathrm{x}^{\prime}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \mathbf{x}
$$

are

$$
\mathbf{x}^{1}(t)=e^{2 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \mathbf{x}^{2}(t)=e^{-t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \mathbf{x}^{3}(t)=e^{-t}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

a fundamental set of solutions to the system? Write down the general solution.
4. Solve the initial value problem

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{4}{-2}
$$

Remember from class: if the eigenvalues λ_{i} are real and different, two fundamental solutions to this system are $\mathbf{x}^{1}=\xi^{1} e^{\lambda_{1} t}$ and $\mathbf{x}^{2}=\xi^{2} e^{\lambda_{2} t}$, for eigenvectors ξ^{1} and ξ^{2} to those eigenvalues.

