Ordinary Differential Equations - 10413181

Homework No. 5

1. Parameter-dependent ODEs and bifurcation

We have discussed (and practiced) drawing direction fields for autonomous equations

$$
y^{\prime}=f(y) .
$$

Recall that the values of y where $f(y)=0$ are "flat" trajectories in the direction field (so-called fixed-points or equilibrium points). Given the autonomous ODE

$$
\begin{equation*}
\frac{d x}{d t}=r+x^{2} \text { where } r \in \mathbb{R} \text { is a parameter } \tag{1}
\end{equation*}
$$

(a) Solve the ODE for $r>0, r<0$, and $r=0$. (You may choose $r=1,-1$, and 0 to simplify things, or leave r as is. Feel free to disregard constants of integration, since this is an autonomous equation.)
(b) (Optional) Think about the qualitative behaviour of each of the solutions. You may sketch a graph of the solution to better visualize things.
(c) Call the right-hand side of the equation $f(x)=r+x^{2}$.

- Plot the graph $(x, f(x))$ for $r=1,-1$ and 0 . (Don't overthink it. This is just like in high-school!)
- At how many points does the graph intersect the x-axis in each case? (Equivalently, how many zeroes does $f(x)$ have for the different values of r?
- Sketch (with the help of the above answer) a direction field in the (x, t)-plane for equation (1) and $r=1,-1$ and 0 . Where are the fixed points?
- Compare the dynamics you see in your sketches with the analytical solutions. Also: compare the effort needed to get a qualitative picture from the direction field to that needed to write down analytical solutions.
- (Optional) Note that as the parameter r changes, fixed points appear or disappear. This phenomenon is called bifurcation!
- (Really Optional!) If you want to find out more about this, try the same exercise as above on the equation $x^{\prime}=r x-x^{2}$. How does the stability of the fixed points change (looking at the direction field)? (This is the trans-critical bifurcation in contrast to the saddle-node bifurcation above).

2. Practice with second order, homogeneous, constant coefficient ODES

For the following problems: (a) Substitute $y=e^{r t}$ into the equations. (b) Find the root(s) of the resulting second order polynomial. (c) Convince yourself that $C e^{r_{1} t}$ for r_{1} any root solves the equation. (d) Write down the general solution $C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ like in class.
(a) $y^{\prime \prime}+3 y^{\prime}-4 y=0$
(b) $y^{\prime \prime}+5 y^{\prime}=0$
(c) $y^{\prime \prime}+3 y^{\prime}+2 y=0$

For the next equations, also determine the value of the two constants that satisfy the initial value problems:
(d) $y^{\prime \prime}-3 y^{\prime}+2 y=0, \quad y(0)=1, y^{\prime}(0)=1$
(e) $y^{\prime \prime}+3 y^{\prime}=0, \quad y(0)=-2, y^{\prime}(0)=3$

