Ordinary Differential Equations - 10413181

Homework No. 6

1. For the following equations, determine whether the given functions are solutions, and whether they are a fundamental set of solutions (reminder: Wronskian).
(a) $y^{\prime \prime}+4 y=0, \quad y_{1}(t)=\cos (2 t), y_{2}(t)=\sin (2 t)$
(b) $x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0,(x>0), \quad y_{1}(x)=x, y_{2}(x)=x e^{x}$
2. For the equation

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

show that $y_{1}=e^{-t}, y_{2}=e^{2 t}$ are a fundamental set of solutions.
(a) For $y_{3}=-2 e^{2 t}, y_{4}=y_{1}+2 y_{2}, y_{5}=2 y_{1}-2 y_{3}$, are y_{3}, y_{4}, and y_{5} also solutions of the ODE?
(b) Which of the following pairs forms a fundamental set of solutions?

$$
\left(y_{1}, y_{3}\right),\left(y_{2}, y_{3}\right),\left(y_{1}, y_{4}\right),\left(y_{4}, y_{5}\right)
$$

3. Determine the Wronskian of two solutions of the following equation (Hint: you do not need to solve the equation.)

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0
$$

4. Find the general solution to the following equation:

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

