Ordinary Differential Equations - 10413181

Homework No. 7

1. For the following expressions (with $t \in \mathbb{R}$), identify the real part, the imaginary part, the complex conjugate, and use Euler's formula to write each as $a+i b$
(a) $\exp ((1+2 i) t))$
(b) $\exp ((2+4 i) t))$
(c) $e^{2+i \pi / 2}$
2. Find solutions to the following initial value problems, write these using Euler's formula, and describe their behavior for large time t
(a) $y^{\prime \prime}+4 y=0, \quad y(0)=0, y^{\prime}(0)=1$
(b) $y^{\prime \prime}+y^{\prime}+5 y=0, \quad y(0)=1, y^{\prime}(0)=0$
(c) $y^{\prime \prime}-6 y^{\prime}+13 y=0, \quad y(\pi / 2)=0, y^{\prime}(\pi / 2)=2$
3. (Optional) Pick one of the problems above and determine the envelope and (pseudo-) frequency of the oscillation, if appropriate.
4. In class we saw that certain kinds of second-order ODEs with non-constant coefficients can be reduced to the constant coefficient case with a suitable transformation. For the Cauchy-Euler type equation

$$
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0
$$

use the substitution $x=\ln (t)$ to calculate $d y / d t, d^{2} y / d t^{2}$ and solve the equation.

