Ordinary Differential Equations - 10413181

Homework No. 9

1. Given the following inhomogeneous second order equation

$$
y^{\prime \prime}-y^{\prime}-2 y=2 e^{-t}
$$

(a) Solve by comparing coefficients. (Make an ansatz for a particular solution $\psi=\ldots$. If something goes wrong initially, try solving the homogeneous problem first to identify the origin of your problems. Then try $\psi=t \cdot \ldots$)
(b) Use variation of parameters to solve the same problem.
(c) Finally, given one solution y_{1} of the homogeneous problem, use reduction of order with the ansatz $y=y_{1}(t) v(t)$ to derive a first order equation for $v^{\prime}(t)=u(t)$.
(d) Show that finding a particular solution to the related problem

$$
y^{\prime \prime}-y^{\prime}-2 y=2 e^{-t}+1
$$

is equivalent to adding a particular solution of $y^{\prime \prime}-y^{\prime}-2 y=1$ to a particular solution of $y^{\prime \prime}-y^{\prime}-2 y=2 e^{-t}$. You may use any of the above methods to determine the particular solutions.
2. In class, we considered the case of damped harmonic oscillators

$$
m y^{\prime \prime}+\gamma y^{\prime}+k y=0
$$

where m is mass, γ a damping coefficient, and k a spring constant, and $m, k>0, \gamma \geq 0$. Assume a motor is attached to the damped spring which supplies an oscillatory force $F_{0} \cos (\omega t)$, so that

$$
m y^{\prime \prime}+\gamma y^{\prime}+k y=F_{0} \cos (\omega t)
$$

(a) We would like to find a particular solution to this general equation. Think first about which method is appropriate, and then use that method to obtain such a solution.
(b) Look up the form of the homogeneous solutions from class (or derive them yourself). What is the long-time behavior $(t \rightarrow \infty)$ of the general solution?
(c) (Optional) Analyze the above problem for $\gamma=0$. Does any particular case of ω in the forcing play a special role? (We will discuss this in class.)

