
Ordinary Differential Equations - 10413181
Homework No. 10 – Solutions

1. Given the homogeneous ODE t2y′′ − 2y = 0, which is of Cauchy-Euler

type, we can make a substitution y = tr to find solutions of this specific

form. Hence the ODE is transformed into t2r(r − 1)tr−2 − 2tr = 0 ⇔
tr(r(r− 1)− 2) = 0 which is equivalent to r2− r− 2 = 0 and has roots

r = 2, r = 1. It is then easy to check that y1 = t2 and y2 = 1/t are a

fundamental set of solutions with Wronskian W = −3.

We have not shown any use of the method of undetermined coefficients

for non-constant coefficients (you may try and see that you run into

problems). But, since we already have a fundamental set of solutions, it

is attractive to try the method of variation of parameters. Remember:

this method works on the normalized equation with leading coefficient

1!

y′′ − 2

t2
= 1

Substituting gives us the matrix equationt2 t−1

2t −t−2

u′1
u′2

 =

0

1

 .

Hence

u′1 =
1

3
(t−1)⇒ u1 =

1

3
ln(t)

u′2 = −1

3
(t2)⇒ u2 = −t3

Thus y1u1 + y2u2 = t2

3
ln(t)− t2 leads to the general solution

y = At2 +
B

t
+
t2

3
ln(t).

Another possible method of solution is reduction of order, say using

y = t2v(t) and deriving the first order equation 4tu + t2u′ = 1 for

u = v′.

2. Recall that
∑∞

n=0 an(x− x0)n converges absolutely if (for an 6= 0)

lim|an+1(x− x0)n+1

an(x− x0)n
| = |x−x0| lim

n→∞
|an+1

an
| = |x−x0|·L and |x−x0| < 1/L.
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(a)

|x− 2| lim |1
1
| = |x− 2| · 1

Hence the radius of convergence is 1.

(b)

lim
n+ 1

n

2n

2n+1
=

1

2

Hence the radius of convergence is 2.

(c)

lim | 2n+1(x+ 1/2)n+1n2

(n+ 1)22n(x+ 1/2)n
| = (2x+ 1) lim | n2

(n+ 1)2
| = (2x+ 1)

Hence the radius of convergence is 1/2.

3. Given y′′ − xy′ − y = 0 and expanding about x0 = 0:

y =
∞∑
n=0

anx
n

y′ =
∞∑
n=0

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n

y′′ =
∞∑
n=0

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n

Hence the equation becomes

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0.

This leads to

2a2 − a0 = 0

(n+ 2)(n+ 1)an+2 − (n+ 1)an = 0

and so the recursion relation

an+2 =
an

n+ 2
.

We have the fundamental set of solutions

y1(x) = 1 +
x2

2
+
x4

8
+ . . . =

∞∑
n=0

x2n

2nn!

y2(x) = x+
x3

3
+
x5

15
+ . . . =

∞∑
n=0

2nn!x2n+1

(2n+ 1)!
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Substituting ψ = 1 + x+ x2

2
+ x3

3
into the equation yields:

1 + 2x− x− x2 − x3 − 1− x− x2

2
− x3

3
= −3x2

2
− 4x3

3
,

so that only terms of order x2 remain (these are small if we are suffi-

ciently close to the expansion point x0 = 0).
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