Ordinary Differential Equations - 10413181

Homework No. 10 - Solutions

1. Given the homogeneous ODE $t^{2} y^{\prime \prime}-2 y=0$, which is of Cauchy-Euler type, we can make a substitution $y=t^{r}$ to find solutions of this specific form. Hence the ODE is transformed into $t^{2} r(r-1) t^{r-2}-2 t^{r}=0 \Leftrightarrow$ $t^{r}(r(r-1)-2)=0$ which is equivalent to $r^{2}-r-2=0$ and has roots $r=2, r=1$. It is then easy to check that $y_{1}=t^{2}$ and $y_{2}=1 / t$ are a fundamental set of solutions with Wronskian $W=-3$.

We have not shown any use of the method of undetermined coefficients for non-constant coefficients (you may try and see that you run into problems). But, since we already have a fundamental set of solutions, it is attractive to try the method of variation of parameters. Remember: this method works on the normalized equation with leading coefficient 1 !

$$
y^{\prime \prime}-\frac{2}{t^{2}}=1
$$

Substituting gives us the matrix equation

$$
\left(\begin{array}{cc}
t^{2} & t^{-1} \\
2 t & -t^{-2}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{1} .
$$

Hence

$$
\begin{array}{r}
u_{1}^{\prime}=\frac{1}{3}\left(t^{-1}\right) \Rightarrow u_{1}=\frac{1}{3} \ln (t) \\
u_{2}^{\prime}=-\frac{1}{3}\left(t^{2}\right) \Rightarrow u_{2}=-t^{3}
\end{array}
$$

Thus $y_{1} u_{1}+y_{2} u_{2}=\frac{t^{2}}{3} \ln (t)-t^{2}$ leads to the general solution

$$
y=A t^{2}+\frac{B}{t}+\frac{t^{2}}{3} \ln (t)
$$

Another possible method of solution is reduction of order, say using $y=t^{2} v(t)$ and deriving the first order equation $4 t u+t^{2} u^{\prime}=1$ for $u=v^{\prime}$.
2. Recall that $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges absolutely if (for $a_{n} \neq 0$)

$$
\lim \left|\frac{a_{n+1}\left(x-x_{0}\right)^{n+1}}{a_{n}\left(x-x_{0}\right)^{n}}\right|=\left|x-x_{0}\right| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\left|x-x_{0}\right| \cdot L \text { and }\left|x-x_{0}\right|<1 / L .
$$

(a)

$$
|x-2| \lim \left|\frac{1}{1}\right|=|x-2| \cdot 1
$$

Hence the radius of convergence is 1 .
(b)

$$
\lim \frac{n+1}{n} \frac{2^{n}}{2^{n+1}}=\frac{1}{2}
$$

Hence the radius of convergence is 2 .
(c)

$$
\lim \left|\frac{2^{n+1}(x+1 / 2)^{n+1} n^{2}}{(n+1)^{2} 2^{n}(x+1 / 2)^{n}}\right|=(2 x+1) \lim \left|\frac{n^{2}}{(n+1)^{2}}\right|=(2 x+1)
$$

Hence the radius of convergence is $1 / 2$.
3. Given $y^{\prime \prime}-x y^{\prime}-y=0$ and expanding about $x_{0}=0$:

$$
\begin{aligned}
& y=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y^{\prime}=\sum_{n=0}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \\
& y^{\prime \prime}=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{aligned}
$$

Hence the equation becomes

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0 .
$$

This leads to

$$
\begin{aligned}
& 2 a_{2}-a_{0}=0 \\
& (n+2)(n+1) a_{n+2}-(n+1) a_{n}=0
\end{aligned}
$$

and so the recursion relation

$$
a_{n+2}=\frac{a_{n}}{n+2} .
$$

We have the fundamental set of solutions

$$
\begin{aligned}
& y_{1}(x)=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!} \\
& y_{2}(x)=x+\frac{x^{3}}{3}+\frac{x^{5}}{15}+\ldots=\sum_{n=0}^{\infty} \frac{2^{n} n!x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Substituting $\psi=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}$ into the equation yields:

$$
1+2 x-x-x^{2}-x^{3}-1-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}=-\frac{3 x^{2}}{2}-\frac{4 x^{3}}{3}
$$

so that only terms of order x^{2} remain (these are small if we are sufficiently close to the expansion point $x_{0}=0$).

