Ordinary Differential Equations - 10413181

Homework No. 11 - Solutions

1. $y^{\prime \prime}+\cos (x) y=0$ is given. We make the power series ansatz (about $\left.x_{0}=0\right)$

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}, \text { so that } y^{\prime \prime}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Using the Taylor series of cos about zero,

$$
\cos (x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots
$$

we see

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=-\sum_{n=0}^{\infty} a_{n} x^{n}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots\right) .
$$

Collecting terms, we find

$$
\begin{array}{r}
2 a_{2}=-a_{0} \\
6 a_{3}=-a_{1} \\
12 a_{4}=a_{0}
\end{array}
$$

which suffices to write down the first four terms of the solution:

$$
y=a_{0}+a_{1} x-\frac{a_{0}}{2} x^{2}-\frac{a_{1}}{6} x^{3}+\frac{a_{0}}{12} x^{4}+\ldots
$$

In principle this could be continued as long as desired.
2. Note

$$
\sum_{n=0}^{\infty} x^{n}:=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} x^{n} .
$$

Hence

$$
\begin{aligned}
& (1-x) \sum_{n=0}^{\infty} x^{n}=(1-x) \lim _{N \rightarrow \infty} \sum_{n=0}^{N} x^{n}=\lim _{N \rightarrow \infty}(1-x) \sum_{n=0}^{N} x^{n} \\
& =\lim _{N \rightarrow \infty}(1-x)\left(1+x+x^{2}+\ldots+x^{N}\right) \\
& =\lim _{N \rightarrow \infty}\left(1+x \ldots+x^{N}-x-x^{2}-\ldots-x^{N+1}\right) \\
& =\lim _{N \rightarrow \infty}\left(1-x^{N+1}\right)=1 .
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
& u^{\prime \prime}+2 u^{\prime}+2 u=0 \\
& v:=u^{\prime} \Rightarrow v^{\prime}=u^{\prime \prime}=-2 u^{\prime}-2 u=-2 v-2 u \\
& \left\{\begin{array}{l}
u^{\prime}=v \\
v^{\prime}=-2 v-2 u
\end{array}\right.
\end{aligned}
$$

(b)

$$
\begin{aligned}
& t^{2} u^{\prime \prime}+t u^{\prime}+\left(t^{2}-1\right) u=0 \\
& v:=u^{\prime} \Rightarrow v^{\prime}=u^{\prime \prime}=-\frac{u^{\prime}}{t}-\frac{\left(t^{2}-1\right) u}{t^{2}}=-\frac{v}{t}-\frac{\left(t^{2}-1\right) u}{t^{2}} \\
& \left\{\begin{array}{l}
u^{\prime}=v \\
v^{\prime}=-\frac{v}{t}-\frac{\left(t^{2}-1\right) u}{t^{2}}
\end{array}\right.
\end{aligned}
$$

(c)

$$
\begin{aligned}
& u^{\prime \prime \prime \prime}-u=0 \\
& u^{\prime}=: v, \quad v^{\prime}=: w=u^{\prime \prime}, \quad w^{\prime}=: z=u^{\prime \prime \prime}, \quad z^{\prime}=u^{\prime \prime \prime \prime}=u \\
& \left\{\begin{array}{l}
u^{\prime}=v \\
v^{\prime}=w \\
w^{\prime}=z \\
z^{\prime}=u
\end{array}\right.
\end{aligned}
$$

4. The system is equivalent to the following in matrix form:

$$
\left(\begin{array}{ccc}
1 & -2 & 3 \\
-1 & 1 & -2 \\
2 & -1 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
7 \\
-5 \\
4
\end{array}\right)
$$

Inverting the matrix leads to

$$
x_{1}=2 \frac{1}{3}, \quad x_{2}=-1 \frac{1}{3}, \quad x_{3}=\frac{2}{3} .
$$

5. (a) The characteristic polynomial associated with matrix A is $\lambda^{2}-$ $\lambda-2=0$ which has roots 2 and -1.
(b) The characteristic polynomial associated with matrix B is $\lambda^{2}-$ $2 \lambda-35=0$ which has roots 7 and -5 .
