Ordinary Differential Equations - 10413181

Homework No. 12 - Solutions
1.

$$
W\left(x^{1}, x^{2}\right)=\operatorname{det}\left(\begin{array}{ll}
t & t^{2} \\
1 & 2 t
\end{array}\right)=t^{2} .
$$

These are linearly independent everywhere except $t=0$.
2.

$$
W\left(x^{1}, x^{2}\right)=\operatorname{det}\left(\begin{array}{ll}
t & e^{t} \\
1 & e^{t}
\end{array}\right)=e^{t}(1-t) .
$$

These are linearly independent everywhere except $t=1$.
3. There are two steps to checking that this is a fundamental set of solutions. The first is to check that each of these are in fact solutions! Denoting the matrix by A :

$$
\begin{gathered}
\frac{d}{d t} x^{1}=e^{2 t}\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)=A x^{1} \\
\frac{d}{d t} x^{2}=e^{-t}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=A x^{2} \\
\frac{d}{d t} x^{3}=e^{-t}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)=A x^{3}
\end{gathered}
$$

Subsequently we need to check that they are a fundamental set, for which we employ the Wronskian:

$$
W\left(x^{1}, x^{2}, x^{3}\right)=\operatorname{det}\left(\begin{array}{ccc}
e^{2 t} & e^{-t} & 0 \\
e^{2 t} & 0 & e^{-t} \\
e^{2 t} & -e^{-t} & -e^{-t}
\end{array}\right)=3 \neq 0
$$

4. For the matrix

$$
A=\left(\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right)
$$

we have associated a characteristic polynomial $\lambda^{2}-6 \lambda+8=0$. This has roots $\lambda_{1}=4, \lambda_{2}=2$. Eigenvectors \mathbf{x} to eigenvalue λ_{1} must fulfill $(\mathbf{A}-2 \mathbf{1}) \mathbf{x}=0$ or

$$
\left(\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

Hence $3 x_{1}=x_{2}$ and an eigenvector is given by

$$
\xi_{1}=\binom{1}{3}
$$

Eigenvectors \mathbf{x} to eigenvalue λ_{2} must fulfill $(\mathbf{A}-41) \mathbf{x}=0$ or

$$
\left(\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

Hence $x_{1}=x_{2}$ and another eigenvector is given by

$$
\xi_{2}=\binom{1}{1}
$$

The general solution is then written in the form

$$
\mathbf{x}(t)=c_{1} e^{2 t}\binom{1}{3}+c_{2} e^{4 t}\binom{1}{1}
$$

for arbitrary constants c_{1}, c_{2} to be determined by the initial conditions. Given the initial condition

$$
\mathbf{x}(t=0)=\binom{4}{-2}
$$

we find

$$
c_{1}\binom{1}{3}+c_{2}\binom{1}{1}=\binom{4}{-2}
$$

or equivalently

$$
\left(\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{4}{-2}
$$

Inverting the matrix then yields $c_{1}=-3$ and $c_{2}=7$. The solution to the IVP is thus

$$
-3 e^{2 t}\binom{1}{3}+7 e^{4 t}\binom{1}{1}
$$

