Homework 2 Solutions

1. (a) $y^{\prime}+\tan (x) y=x \sin (2 x)$ invites one to apply the integrating factor method. $\mu=e^{\int \tan (x) d x}=e^{-\ln (\cos (x))}$. Hence

$$
\begin{aligned}
\frac{y}{\cos (x)}= & \int \frac{x \sin (2 x)}{\cos (x)} d x=\int \frac{2 x \sin (x) \cos (x)}{\cos (x)} d x \\
& =2 \int x \sin (x) d x=2(\sin (x)-x \cos (x))
\end{aligned}
$$

Hence: $y=2 \sin (x) \cos (x)-2 x \cos ^{2}(x)+C \cos (x)$
(b) $y^{\prime}-3 x^{2} y=-x^{2}, \quad y(0)=1$ again should be treated by the integrating factor method, with $\mu=e^{-x^{3}}$. Integrating both sides gives

$$
y=1 / 3+C e^{x^{3}}
$$

and the initial value $y(0)=1 \Rightarrow C=2 / 3$.
2. Using either separation or the integrating factor method leads one to the form of solution

$$
y=C e^{-\int \frac{\ln ^{2}(x)}{\sin ^{2}(x)} d x}
$$

The initial condition is $y(5)=0$, which can only be satisfied if $C=0$. Hence the integral need not be treated, and the solution $y=0$ is the unique solution (at least on an interval $[5,2 \pi]$).
3. (a) Separation gives

$$
\frac{y^{\prime}}{y^{2}}=-\sin (x)
$$

hence

$$
y=\frac{-1}{\cos (x)+C}
$$

(b) Separation again yields

$$
\int \frac{1}{1+y^{2}} d y=2 \int 1+x d x
$$

or $y=\tan \left(2 x+x^{2}+C\right)$, whereupon the initial condition implies $C=0$.
(a) Making the substitution reduces the ODE to $x v^{\prime}=1+v$ which is separable. Hence

$$
\int \frac{d v}{1+v}=\int \frac{d x}{x}
$$

so that $\ln |1+v|=\ln |x|+C \Rightarrow|1+v|=|x| e^{C} \Leftrightarrow v=c x-1$ for $c \neq 0$. Transforming back to the original variables gives $y=c x^{2}-x$ again for $c \neq 0$.
(b) Substitution again reduces the ODE to a separable equation $x v^{\prime}=$ $1+v^{2}$, so that

$$
\int \frac{d v}{1+v^{2}}=\int \frac{1}{x} d x
$$

Hence $\arctan (v)=\ln |x|+C \Rightarrow y=x \tan (\ln |x|+C)$

