Homework 2 Solutions

1. Identifying this equation as $M+N y^{\prime}=0$ with

$$
\begin{gathered}
M=2 t \sin (y)+y^{3} e^{t} \\
N=t^{2} \cos (y)+3 y^{2} e^{t}
\end{gathered}
$$

we find that

$$
M_{y}=2 t \cos (y)+3 y^{2} e^{t}=N_{t}
$$

Hence $\exists \phi: \nabla \phi=(M, N)$, and

$$
\begin{aligned}
\phi & =\int M d t+k(y)=\int 2 t \sin (y)+y^{3} e^{t} d t+k(y)=t^{2} \sin (y)+y^{3} e^{t}+k \\
\phi & =\int N d y+h(t)=\int t^{2} \cos (y)+3 y^{2} e^{t} d y+h(t)=t^{2} \sin (y)+y^{3} e^{t}+h
\end{aligned}
$$

Hence the solution curves are given by

$$
t^{2} \sin (y)+y 3 e^{t}=C
$$

Inspecting

$$
\frac{d}{d t}\left(t^{2} \sin (y)+y 3 e^{t}\right)=0
$$

recovers the ODE.
2. $y^{\prime}+y=5 \sin (2 t)$ is a candidate for the integrating factor method with $\mu=e^{t}$. Thus:

$$
y e^{t}=5 \int e^{t} \sin (2 t) d t
$$

By using partial integration twice, we find

$$
\begin{aligned}
& \int e^{t} \sin (2 t) d t=e^{t} \sin (2 t)-\int e^{t} 2 \cos (2 t) d t \\
= & e^{t} \sin (2 t)-\left(e^{t} 2 \cos (2 t)+4 \int e^{t} \sin (2 t) d t\right)
\end{aligned}
$$

Hence $5 \int e^{t} \sin (2 t) d t=e^{t} \sin (2 t)-e^{t} 2 \cos (2 t)$, resulting in

$$
y=\sin (2 t)-2 \cos (2 t)+C e^{-t}
$$

3. This equation is separable, such that

$$
\int \frac{d y}{\cos ^{2}(2 y)}=\int \cos ^{2}(x) d x
$$

These integrals lead to

$$
\tan (2 y)=x+\sin (2 x) / 2+C
$$

for $\cos (2 y) \neq 0$. Another solution is $y= \pm(2 n+1) \pi / 4$ for any integer n.
4. Writing the equation in normal form $y^{\prime}+y / 2=3 t^{2} / 2$ allows an immediate identification of the integrating factor $\mu=e^{t / 2}$. Resolving the integral $\int e^{t / 2} t^{2} d t$ by partial integration (twice, differentiating the t^{2} term) yields

$$
y=c e^{-t / 2}+3 t^{2}-12 t+24
$$

5. This equation is of the type $M+N y^{\prime}=0$ with

$$
\begin{aligned}
M & =2 x+3 \\
N & =2 y-2
\end{aligned}
$$

Inspection yields

$$
M_{y}=2=N_{x}
$$

hence there is a potential ϕ, such that

$$
\begin{aligned}
& \phi=\int 2 x+3 d x+c(y)=x^{2}+3 x+C \\
& \phi=\int 2 y-2 d y+d(x)=y^{2}-2 y+C
\end{aligned}
$$

and the solution curves are

$$
x^{2}+3 x-2 y+y^{2}=C
$$

6. The integrating factor is $\mu=e^{-4 t}$, which yields (integrating over 1 on the RHS)

$$
y=(t+C) e^{4 t}
$$

the IVP $y(0)=2$ implies $C=2$.

