Homework 2 Solutions

1. (a) $y^{\prime}-y=y^{2}$ is a separable equation, but it can also be identified as a Bernoulli equation with $n=2$. This invites the substitution $y^{-} 1=v \Leftrightarrow y=1 / v$. Using the Chain Rule, we find $y^{\prime}=-v^{-2} v^{\prime}$, so that the equation is transformed into

$$
-v^{\prime}-v=1
$$

a linear equation! Now either the integrating factor or separation methods apply. For example, using separation yields

$$
v=C e^{-x}-1
$$

Finally the solution must be written in the original variables, via the transform $y=1 / v$, so that

$$
y=\frac{1}{C e^{-x}-1}
$$

(b) This nonlinear, nonseparable equation may be identified as a Bernoulli equation with exponent $n=-2$. This invites the transformation $v=y^{3}$, or upon applying the chain rule, $y^{\prime}=(1 / 3) v^{-2 / 3} v^{\prime}$. This transforms the equation into the linear equation

$$
v^{\prime}-\frac{6}{x} v=3 x
$$

Now we can use the integrating factor method with $\mu=x^{-6}$ to give

$$
v=-\frac{3}{4} x^{2}+C x^{6}
$$

and finally

$$
y=\left(C x^{6}-\frac{3}{4} x^{2}\right)^{1 / 3}
$$

(c) $t^{2} y^{\prime}+2 t y-y^{3}=0$ is a Bernoulli equation with $n=3$. The substitution is thus $y^{-2}=v$ and $y^{\prime}=-(1 / 2) v^{-3 / 2} v^{\prime}$. Plugging this into the equation reduces it to the linear equation

$$
v^{\prime}-\frac{4}{t} v+\frac{2}{t^{2}}=0
$$

This can be solved via the integrating factor method, where the integrating factor $\mu=t^{-4}$. Hence

$$
v=\frac{2}{5 t}+C t^{4} \Rightarrow y=\frac{1}{\left(2 /(5 t)+C t^{4}\right)^{1 / 2}}
$$

2. (a) $y^{\prime}=1+t^{2}-2 t y+y^{2}$ has the particular solution $y_{1}(t)=t$. The Ricatti ansatz $y=t+1 / v$ means $y^{\prime}=1-v^{-2} v^{\prime}$, which is substituted into the equation to reduce it to

$$
v^{\prime}=-1
$$

a great simplification. Thus $v=C-t$, and

$$
y(t)=t+\frac{1}{C-t}
$$

(b) This Ricatti equation has $y_{1}(t)=1 / t$, so that

$$
y^{\prime}=\frac{-1}{t^{2}}-\frac{1}{v^{2}} v^{\prime}
$$

which is plugged in to the equation to give the linear equation

$$
v^{\prime}+\frac{v}{t}=-1
$$

This has an integrating factor of $\mu=t$, so that $v=-t / 2+C / t$. Finally

$$
y=\frac{1}{t}+\frac{2 t}{C-t^{2}}
$$

after a bit of algebra.
3. (a) Since the equation is homogeneous, $y=0$ is a solution to the IVP $y(0)=0$.
(b) The ODE is nonlinear, so we may separate it to give

$$
\frac{1}{y^{1 / 3}} y^{\prime}=\sin (2 t)
$$

Subsequently, computing the integrals

$$
\frac{3 y^{2 / 3}}{2}=\frac{1-\cos (2 t)}{2}=\sin ^{2}(t)
$$

so that the two other solutions to this initial value problem are

$$
y= \pm \sqrt{8 / 27} \sin ^{3}(t)
$$

(c) The non-uniqueness may be traced back to the failure of

$$
\frac{\partial}{\partial y}\left(y^{1 / 3} \sin (2 t)\right)
$$

to be continuous at zero, so that the hypotheses of the Existence \& Uniqueness Theorem are not satisfied.

