Homework 5 Solutions

1. Parameter-dependent ODEs and bifurcation

Given the first order, nonlinear, separable ODE

$$
\frac{d x}{d t}=r+x^{2}
$$

with a parameter $r \in \mathbb{R}$, we have several options of investigating the behavior of solutions. We shall see that the most straightforward (namely solving the equation) is the hardest and gives the least insight. This is a standard situation, and one reason why qualitative analysis of ODEs (especially those for which an explicit solution cannot be found) is so valuable.
Step 1: Solving the ODEs

$$
x^{\prime}=r+x^{2} \Rightarrow \int \frac{d x}{r+x^{2}}=t+C
$$

1. $\left(r=-a^{2}<0\right)$

$$
\int \frac{d x}{x^{2}-a^{2}}= \begin{cases}\frac{1}{2 a} \ln \left(\frac{x-a}{x+a}\right) & x^{2}>a^{2} \tag{1}\\ \frac{1}{2 a} \ln \left(\frac{a+x}{a-x}\right) & x^{2}<a^{2}\end{cases}
$$

Hence either

$$
\frac{x-a}{x+a}=C e^{2 a t} \Rightarrow x=a \frac{1+C e^{2 a t}}{1-C e^{2 a t}}
$$

or

$$
\frac{a+x}{a-x}=C e^{2 a t} \Rightarrow x=a \frac{C e^{2 a t}-1}{1+C e^{2 a t}}
$$

2. $(r=0)$

$$
\begin{equation*}
\int \frac{d x}{x^{2}}=-x^{-1} \tag{2}
\end{equation*}
$$

Hence

$$
x=\frac{1}{C-t}
$$

3. $\left(r=a^{2}>0\right)$

$$
\begin{equation*}
\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan (x / a) \tag{3}
\end{equation*}
$$

Hence

$$
x=a \tan (a t+C)
$$

It is rather hard to get information about the dependence of each of these solutions on the parameter r. Instead, we may take a different approach: first we shall plot the right-hand side of the equation, $f(y)=r+x^{2}$ for the three cases:

Figure 1: $r<0$

Figure 2: $r=0$

Figure 3: $r>0$

Note that each zero of $f(y)$ is a equilibrium point where $x^{\prime}=0$! We can easily see that decresing the parameter from $r=1$ (where there are no equilibrium solutions) creates a single equilibrium point when $r=0$, which further splits off into two equilibrium points for $r<0$. These basic dynamics are captured from the direction fields:

Figure 4: $r<0$

1	1	1													1	I	I		1		
1	1	1		1	1				1	1		1	I	1	1	I	1	1	I		1
1	,	1		1	1		1		1	1	1	1	1	1	1	1	1	1	1		1
1	1	1		1	,		1	1	1	1	1^{3}	1	1	1	1	1	1	1	1		1
1	1	1		1	1		1)	,	1	1	1	1	1	1	1	1	1	1		I
1	1	1		1	/				1	1	${ }^{2}$	1	,	1	1	1	1	1	,		1
1	/	/		1	/				92)	1		/	/	1	1	1	/	/	/		/
,	,									-		,	-	,	,	,	-	,	,		-
		-						-	-		$\overline{0}$	-	-	-	-	-	-	-	-		-
± 5		-4			-																-
-	-	,		-	,				-						,	-	-	,	-		,
1	/	/		1	/		/	1				/	/	/	/	/	/	1	/		/
1	1	1		1	1		1	1	1	$1 /$	$1-2$	1	1	1	1	1	1	1	1		1
1	1	1		1	1		1	1	1	,		1	1	1	1	1	1	I	1		I
1	1	1		1	1		1	1	1					1	1	1	1	1	1		1
1	1	1		1	1		1	1	1		88		1	1	1	1	1	1	1		1
1	1	1		1	1		1	1	1	1	-4.	1	1	1	1	I	1	1	1		1
1	1	1		1	1		1	1	1	1	1	1	I	1	I	I	1	1	I		1
1	1	1		1	।		1	I	1	।	+5.	,	1	I	1	I	1	1	1	I	1

Figure 5: $r=0$

Figure 6: $r>0$

This phenomenon of fixed points appearing or disappearing (or stability shifting) is known as bifurcation. Note that the fixed point appearing at $r=0$ is semi-stable, and of the two fixed points appearing after bifurcation one is stable and the other unstable.

For more information, look at the excellent book Nonlinear Dynamics and Chaos by Steven Strogatz.

Problem 2. (a)

$$
\begin{array}{r}
r^{2}+3 r-4=0 \Rightarrow r_{1}=1, r_{2}=-4 \\
\\
\Rightarrow y=C_{1} e^{t}+C_{2} e^{-4 t}
\end{array}
$$

(b)

$$
\begin{aligned}
y^{\prime \prime}+5 y^{\prime}=0 \Rightarrow r^{2}+5 r=0 & \Rightarrow r_{1}=0, r_{2}=-5 \\
& \Rightarrow y=C_{1} e^{-5 t}+C_{2}
\end{aligned}
$$

(c)

$$
\begin{array}{r}
r^{2}+3 r+2=0 \Rightarrow r_{1}=-1, r_{2}=-2 \\
y=C_{1} e^{-t}+C_{2} e^{-2 t}
\end{array}
$$

(d)

$$
\begin{array}{r}
r^{2}-3 r+2=0 \Rightarrow r_{1}=1, r_{2}=2 \\
\Rightarrow y=C_{1} e^{t}+C_{2} e^{2 t} \\
y(0)=C_{1}+C_{2}=1 \\
y^{\prime}(0)=C_{1}+2 C_{2}=1 \\
\Leftrightarrow C_{1}=1, C_{2}=0 \Rightarrow y=e^{t}
\end{array}
$$

(e)

$$
\begin{array}{r}
r^{2}+3 r=0 \Rightarrow r_{1}=-3, r_{2}=0 \\
\Rightarrow y=C_{1} e^{-3 t}+C_{2} \\
y(0)=C_{1}+C_{2}=-2 \\
y^{\prime}(0)=-3 C_{1}=3 \Rightarrow C_{1}=-1 \Rightarrow C_{2}=-1 \\
\Rightarrow y=-e^{-3 t}-1
\end{array}
$$

