Ordinary Differential Equations - 10413181

Homework No. 6

1. (a) $y^{\prime \prime}+4 y=0, \quad y_{1}(t)=\cos (2 t), y_{2}(t)=\sin (2 t)$.

Calculate $y_{1}^{\prime \prime}=-4 y_{1}, \quad y_{2}^{\prime \prime}=-4 y_{2}$ So both are solutions.

$$
W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=\cos (2 t) 2 \cos (2 t)-\sin (2 t)(-2) \sin (2 t)=2 \neq 0
$$

(b) $x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0,(x>0), \quad y_{1}(x)=x, y_{2}(x)=x e^{x}$

Calculate $y_{1}^{\prime}=1, y_{1}^{\prime \prime}=0$ so that

$$
x^{2} y_{1}^{\prime \prime}-x(x+2) y_{1}^{\prime}+(x+2) y_{1}=0-x(x+2)+(x+2) x=0 .
$$

Also: $y_{2}^{\prime}=e^{x}+x e^{x}, y_{2}^{\prime \prime}=2 e^{x}+x e^{x}$ so that

$$
x^{2} y_{2}^{\prime \prime}-x(x+2) y_{2}^{\prime}+(x+2) y_{2}=x^{2}\left(2 e^{x}+x e^{x}\right)-x(x+2)\left(e^{x}+x e^{x}\right)+(x+2) x e^{x}=0
$$

Finally the Wronskian

$$
W=x\left(e^{x}+x e^{x}\right)-x e^{x}=x^{2} e^{x} \neq 0 \quad(x>0) .
$$

2. For the equation

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

show that $y_{1}=e^{-t}, y_{2}=e^{2 t}$ are a fundamental set of solutions.
Here we calculate the Wronskian

$$
W=e^{-t} 2 e^{2 t}+e^{-t} e^{2 t}=3 e^{t} \neq 0
$$

(a) Note that

$$
\begin{array}{r}
y_{3}=-2 y_{2} \\
y 4=y_{1}+2 y_{2} \\
y_{5}=2 y_{1}+4 y_{2}
\end{array}
$$

Since the equation is linear, and we have checked y_{1} and y_{2} are solutions, so all linear combinations are solutions too. Hence we do not need to do anything further!
(b) Here we recast the pairs by noting which is a linear combination of another solution:

$$
\begin{array}{r}
\left(y_{1}, y_{3}\right) \Leftrightarrow\left(y_{1},-2 y_{2}\right) \text { is a fundamental set } \\
\left(y_{2}, y_{3}\right) \Leftrightarrow\left(y_{2},-2 y_{2}\right) \text { is not a fundamental set } \\
\left(y_{1}, y_{4}\right) \Leftrightarrow\left(y_{1}, y_{1}+2 y_{2}\right) \text { is a fundamental set } \\
\left(y_{4}, y_{5}\right) \Leftrightarrow\left(y_{1}+2 y_{2}, 2\left(y_{1}+2 y_{2}\right)\right) \text { is not a fundamental set }
\end{array}
$$

Of course one can also check the Wronskians all by hand.
3. Determine the Wronskian of two solutions of the following equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0
$$

Rewriting in normal form so that the coefficient of $y^{\prime \prime}$ is 1 , use Abel's formula to find

$$
W=C e^{-\int 1 / x d x}=C / x
$$

4. Find the general solution to the following equation:

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

Substitute $y=e^{r t}$ to get a characteristic polynomial

$$
r^{2}-2 r+2=0
$$

with roots

$$
r=\frac{2 \pm \sqrt{-4}}{2}=1 \pm i
$$

This gives a solution

$$
y=C_{1} e^{t(1+i)}+C_{2} e^{t(1-i)}
$$

or

$$
y=C_{1} e^{t}(\cos t+i \sin t)+C_{2} e^{t}(\cos t-i \sin t)
$$

or

$$
y=e^{t}(A \cos t+B \sin t) .
$$

