Ordinary Differential Equations - 10413181

Homework No. 7

1. For the following expressions (with $t \in \mathbb{R}$), identify the real part, the imaginary part, the complex conjugate, and use Euler's formula to write each as $a+i b$
(a) $\exp ((1+2 i) t))=e^{t} e^{2 i t}$

Complex conjugate: $e^{t} e^{-2 i t}$
Euler's formula: $e^{t}(\cos (2 t)+i \sin (2 t))$
Real part: $e^{t} \cos (2 t)$
Imaginary part: $e^{t} \sin (2 t)$
(b) $\exp ((2+4 i) t))=e^{2 x} e^{4 i x}$

Complex conjugate: $e^{2 x} e^{-4 i x}$
Real part: $(z+\bar{z}) / 2=e^{2 x} \cos (4 x)$
Imaginary part: $(z-\bar{z}) / 2 i=e^{2 x} \sin (4 x)$
Euler's formula: $e^{2 x}(\cos (4 x)+i \sin (4 x))$
(c) $e^{2+i \pi / 2}=e^{2} e^{i \pi / 2}$

Complex conjugate: $e^{2} e^{-i \pi / 2}$
Euler's formula: $e^{2}\left(\cos (\pi / 2)+i \sin (\pi / 2)=i e^{2} \sin (\pi / 2)\right.$
Real part: 0
Imaginary part: $e^{2}(\sin (\pi / 2))$
2. Find solutions to the following initial value problems, write these using Euler's formula, and describe their behavior for large time t
(a) $y^{\prime \prime}+4 y=0, \quad y(0)=0, y^{\prime}(0)=1$

Characteristic polynomial $r^{2}+4=0$ has roots $r= \pm 2 i$
$y=A e^{2 i t}+B e^{-2 i t}$
$y(0)=A+B=0 \Rightarrow A=-B$
$y^{\prime}(0)=2 i A-2 i B=1 \Rightarrow B=i / 4$
$\Rightarrow y=-i e^{2 i t} / 4+i e^{-2 i t} / 4 \Leftrightarrow y=\sin (2 t) / 2$
(b) $y^{\prime \prime}+y^{\prime}+5 y=0, \quad y(0)=1, y^{\prime}(0)=0$

Characteristic polynomial $r^{2}+4 r+5=0$ has roots $r=-2 \pm i$

$$
\begin{aligned}
& \Rightarrow y=A e^{(-2+i) t}+B e^{(-2-i) t}=e^{-2 t}(C \cos (t)+D \sin (t)) \\
& y(0)=C=1 \\
& y^{\prime}(0)=-2 C+D=0 \Rightarrow D=2 \\
& \Rightarrow y=e^{-2 t}(\cos (t)+2 \sin (t))
\end{aligned}
$$

(c) $y^{\prime \prime}-6 y^{\prime}+13 y=0, \quad y(\pi / 2)=0, y^{\prime}(\pi / 2)=2$

Characteristic polynomial $r 2-6 r+13=0$ has roots $3 \pm 2 i$

$$
\begin{aligned}
& \Rightarrow y=e^{3 t}\left(C_{1} \sin (2 t)+C_{2} \cos (2 t)\right) \\
& y(\pi / 2)=e^{3 \pi / 2}\left(-C_{2}\right)=0 \Rightarrow C_{2}=0 \\
& y^{\prime}(\pi / 2)=-e^{3 \pi / 2} 2 C_{1}=2 \Rightarrow C_{1}=-e^{3 \pi / 2} \\
& \Rightarrow y=-e^{3 \pi / 2} \sin (2 t)
\end{aligned}
$$

3. (Optional) Pick one of the problems above and determine the envelope and (pseudo-) frequency of the oscillation, if appropriate.
4. In class we saw that certain kinds of second-order ODEs with non-constant coefficients can be reduced to the constant coefficient case with a suitable transformation. For the Cauchy-Euler type equation

$$
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0
$$

use the substitution $x=\ln (t)$ to calculate $d y / d t, d^{2} y / d t^{2}$ and solve the equation.

The substitution $x=\ln (t)$ implies

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\frac{1}{t} \frac{d y}{d x}, \quad \frac{d^{2} y}{d t^{2}}=\frac{-1}{t^{2}} \frac{d y}{d x}+\frac{1}{t^{2}} \frac{d^{2} y}{d x^{2}}
$$

Substituting into the equation then yields the constant coefficient equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

with characteristic polynomial $r^{2}+3 r+2=0$ with roots $r=-2,-1$. Hence

$$
y=A e^{-2 x}+B e^{-x}=A e^{-2 \ln (t)}+B e^{-\ln (t)}=\frac{A}{t^{2}}+\frac{B}{t} .
$$

