
Ordinary Differential Equations - 10413181

Homework No. 9 Solutions

1. Given the ODE y′′ − y′ − 2y = 2e−t, we have several methods of solving this

equation. For variation of parameters we shall need two solutions to the homo-

geneous problem, and it is wise to find them for the method of undetermined

coefficients as well, since they may indicate that we have to change our ansatz.

That is, if the inhomogeneity is itself a solution to the homogeneous problem, we

need to make an ansatz t× . . . The homogeneous problem has the characteristic

polynomial r2 − r − 2 = 0 with roots r = 2, −1. Hence, since e−t is a solution

to the homogeneous problem, we need to modify our undetermined coefficients

idea.

(a) From what was discussed above, make a trial ansatz ψ = Ate−t (NOT

ψ = Ae−t, but you can try it if you’re not sure). ψ′ = Ae−t − Ate−t and

ψ′′ = −2Ae−t +Ate−t. Plugging into the ODE gives

−3Ae−t = 2e−t ⇒ A = −2/3.

Hence a particular solution is given by

ψ = −2t/3 · exp(−t)

(b) Having found two solutions y1 = e−t and y2 = e2t, we can also easily use

the variation of parameters method: e−t e2t

−e−t 2e2t


u′1
u′2

 =

 0

2e−t

 (1)

Noting that the Wronskian is W = 3et, we invert to getu′1
u′2

 =
1

3et

2e2t −e2t

e−t e−t


 0

2e−t

 (2)

Hence

u′1 = −2t/3

u′2 = 2e−3t/3
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and so ψ = e−t · −2t/3 + e2t · 2e−3t/3 = −2te−t/3 − 2e−t/9. The second

term of this is simply a linear combination of a solution to the homogeneous

equation, so in fact the simplest particular solution to the inhomogeneous

problem is seen to be the first term

ψ = −2t/3 exp(−t).

(c) Finally, if we cannot remember any of the above methods, we can always

use reduction of order. A solution to the homogeneous problem is easy to

find for constant coefficients, let’s take y1 = e−t. Then say y = v(t)y1(t)

and substitute:

y′′ = v′′e−t − 2v′e−t + ve−t, y′ = v′e−t − ve−t

Plugging this into the inhomogeneous ODE gives

v′′e−t − 2v′e−t − v′e−t = 2e−t

which we see contains only v′′ and v′. Substitute v′ = u and this turns into

u′ − 3u = 2

which is a first order equation that we know how to solve easily by the

integrating factor method. The integrating factor is µ = e−3t and leads

to the equation e−3tu = −(2/3)e−3t + C ⇒ u = −2/3 + Ce3t. Integrating

returns v = −2t/3 − Ce3t/3 and finally multiplying by e−t gives y =

−2t/3 · e−t − (1/3)e2t, where again only the first term is relevant.

(d) We are now asked to treat the problem y′′ − y′ − 2y = 1 + 2e−t, which

is related to the problem we have just treated. We show that we can

solve y′′ − y′ − 2y = 1, and add the particular solutions of this and the

previous problem, to obtain a solution to the problem with right-hand

side 1 + 2e−t. Since we already have all the machinery, it is easiest to use

variations of parameters. Copy the same matrix as above, but replace the

inhomogeneous term:u′1
u′2

 =
1

3et

2e2t −e2t

e−t e−t


0

1

 (3)
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Hence

u′1 = −1

3
et

u′2 = −1

6
e−2t

so that u1y1 + u2y2 = −1/3− 1/6 = −1/2. It is now easy to check that

ψ = −2t/3 · e−t − 1/2

is a particular solution to y′′−y′−2y = 1+2e−t by substituting (if needed).

The moral of the story is that you can solve an initial value problem

p(x)y′′ + q(x)y′ + r(x)y =

N∑
i=0

gi(t)

by solving N different, separate initial value problems for each of the gis.

2. (a) As remarked above, the variation of parameters method requires two solu-

tions y1 and y2 of the homogeneous problem. However, depending on the

values of m, γ, and k, we may have (recall from class)

y1 = Aer1t, y2 = Ber2t if γ2 − 4km > 0

y1 = Ae−γt/2m, y2 = Bte−γt/2m if γ2 − 4km = 0

y1 = Ae−γt/2m cos(µt), y2 = Be−γt/2m sin(µt) if γ2 − 4km < 0

where µ =
√

4km− γ2/(2m) > 0. Hence we must solve separately for each

of these cases. The advantage of undetermined coefficients is that we do

not need to use these solutions.

Say ψ = A cos(ωt) + B sin(ωt). Plugging into the ODE gives immediately

(since terms involving sin and cos must be treated separately)

− ω2mB − γωA+ kB = 0

− ω2mA+ γωB + kA = F0

which leads to

A = F0
k − ω2m

(k − ω2m)2 + γ2ω2
, B = F0

γω

(k − ω2m)2 + γ2ω2

so that

γ =
F0

(k − ω2m)2 + γ2ω2

(
(k − ω2m) cos(ωt) + γω sin(ωt)

)
.
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We could sum this up into one sinusoidal term, but it is not strictly nec-

essary. We see that it is a pure oscillation.

(b) Regarding the long-time behaviour, we note that r1, r2 are always negative

in the case of two real roots, and that −γt/2m is likewise negative. This

means that the solutions to the homogeneous problem given above are de-

caying with time, while the particular solution is purely oscillatory. Thus,

in the large time limit, the solution to this forced system tends to that of

the particular solution

y = yhom + ψ → ψ (t→∞).

This is to say that the initial conditions (which determine the specific form

of yhom, but have no effect on ψ) are forgotten after some time, where the

forcing dominates the behaviour.
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