PDEs 10422884 - Homework 1

This homework must be handed in prior to the tutorial on April 4th, 2017. Questions marked with * will be graded, and will go towards your grade on the homework. Unmarked questions will be checked for completion (or a reasonable attempt).
${ }^{*} 1$. Which of the following operators are linear?
(a) $L[u]=u_{x}+x u_{y}$
(b) $L[u]=u_{x}+u u_{y}$
(c) $L[u]=u_{x}+u_{y}^{2}$
(d) $L[u]=u_{x}+u_{y}+1$
(e) $L[u]=\sqrt{1+x^{2}}(\cos (y)) u_{x}+u_{y x y}-(\arctan (x / y)) u$
*2. For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or linear homogeneous; provide reasons.
(a) $u_{t}-u_{x x}+1=0$
(b) $u_{t}-u_{x x}+x u=0$
(c) $u_{t}-u_{x x t}+u u_{x}=0$
(d) $u_{t t}-u_{x x}+x^{2}=0$
(e) $i u_{t}-u_{x x}+u / x=0$
(f) $u_{x}\left(1+u_{x}^{2}\right)^{-1 / 2}+u_{y}\left(1+u_{y}^{2}\right)^{-1 / 2}=0$
(g) $u_{x}+e^{y} u_{y}=0$
(h) $u_{t}+u_{x x x x}+\sqrt{1+u}=0$
*3. Verify that $u(x, y)=f(x) g(y)$ is a solution of the $\operatorname{PDE} u u_{x y}=u_{x} u_{y}$ for all pairs of (differentiable) functions f and g of one variable.
4. Verify by direct substitution that

$$
u_{n}(x, y)=\sin (n x) \sinh (n y)
$$

is a solution of $u_{x x}+u_{y y}=0$ for every $n>0$.
${ }^{*} 5$. Solve the equation $3 u_{y}+u_{x y}=0$. (Hint: Let $v=u_{y}$.)
6. Show that the solutions of the differential equation $u^{\prime \prime \prime}-3 u^{\prime \prime}+4 u=0$ form a vector space. Find a basis of it.

