PDEs 10422884 - Homework 10

This homework does not need to be handed in.

1. Let $h>0$. Solve the problem

$$
\begin{aligned}
& u_{t}-u_{x x}+h u=0,0<x<\pi, t>0 \\
& u(0, t)=0, u(\pi, t)=1, t \geq 0 \\
& u(x, 0)=0,0 \leq x \leq \pi
\end{aligned}
$$

Is the solution classical? (Recall from class what you need to check!)
2. Solve the problem

$$
\begin{aligned}
& u_{t}-u_{x x}=2 t+(9 t+31) \sin (3 x / 2), 0<x<\pi, t>0 \\
& u(0, t)=t^{2}, u_{x}(\pi, t)=1, t \geq 0 \\
& u(x, 0)=x+3 \pi, 0 \leq x \leq \pi
\end{aligned}
$$

Is the solution classical?
3. Let $u(x, t)$ be a solution of the problem

$$
\begin{aligned}
& u_{t}-u_{x x}=0, Q_{T}=\{(x, t) \mid 0<x<\pi, 0<t \leq T\} \\
& u(0, t)=u(\pi, t)=0,0 \leq t \leq T \\
& u(x, 0)=\sin ^{2}(x), 0 \leq x \leq \pi
\end{aligned}
$$

Use the maximum principle to prove that $0 \leq u(x, t) \leq e^{-t} \sin (x)$ in the rectangle Q_{T}.
4. Consider the equation

$$
\begin{aligned}
& u_{t}-u_{x x}=0,0<x<1, t>0 \\
& u(0, t)=u(1, t)=0 \\
& u(x, 0)=4 x(1-x)
\end{aligned}
$$

(a) Show that $0<u(x, t)<1$ for all $t>0$ and $x \in(0,1)$. (b) Show that $u(x, t)=u(1-x, t)$ for all $t \geq 0$ and $0 \leq x \leq 1$. (c) Use the energy method to show that $\int_{0}^{1} u^{2} d x$ is a strictly decreasing function of t.
5. Show that the maximum principle is not true for the equation $u_{t}=x u_{x x}$ with a variable coefficient. First verify that $u(x, t)=-2 x t-x^{2}$ is a solution. Find the location of its maximum in the closed rectangle $\{-x \leq$ $x \leq 2,0 \leq t \leq 1\}$.

