PDEs 10422884 – Homework 2

This homework must be handed in prior to the tutorial on April 27th, 2017. Questions marked with * will be graded, and will go towards your grade on the homework. Unmarked questions will be checked for completion (or a reasonable attempt).

- *1. Given is the PDE $yu_x xu_y = 0$, (y > 0), along with either auxiliary condition (a) $u(x, 0) = x^2$ or (b) u(x, 0) = x.
 - (a) Reformulate the PDE as a directional derivative, i.e. find the vector \vec{v} such that $\frac{du}{d\vec{v}} = 0$ is equivalent to the PDE. Recall that the PDE then says that solutions u are constant in the direction of this vector \vec{v} , i.e. along lines with a slope equal to \vec{v} . Use this geometric idea to find a solution to the PDE in terms of arbitrary function(s), and then attempt to solve the problems (a) and (b).
 - (b) Use the method of characteristics to solve the same boundary value problems. Find the characteristic ODE

$$x_t = a(x, y, u)$$
$$y_t = b(x, y, u)$$
$$u_t = c(x, y, u)$$

and write each auxiliary condition parametrically in terms of (s, t). Attempt to solve the problems (a) and (b).

- *2. Use any method (including characteristics and the geometric ideas learned in the tutorial) to solve the constant coefficient equation $2u_t + 3u_x = 0$ subject to the auxiliary condition $u = \sin(x)$ when t = 0.
- 3. Solve the PDE $au_x + bu_y + cu = 0$ by using the following new set of coordinates $\xi = ax + by$, $\zeta = bx ay$. *Hint:* Use the chain rule to express derivatives w.r.t. x as derivatives w.r.t. ξ , etc.
- 4. Solve the PDE $u_x + u_y = 1$ by using the following new set of coordinates $\xi = x + y, \ \zeta = x y.$
- 5. Solve

$$u_t + xu_x = u^3$$
$$u(x, 0) = \sin(x)$$

As some time T > 0 the solution u blows up. That is, there exist points x_0 such that $|u(x_0,T)| \to +\infty$. Find the smallest time T, and the points x_0 such that $|u(x_0,T)| \to +\infty$ as $t \to T^-$.