PDEs 10422884 - Homework 3

This homework must be handed in prior to the tutorial on April 27th, 2017. Questions marked with $*$ will be graded, and will go towards your grade on the homework. Unmarked questions will be checked for completion (or a reasonable attempt).
*1. Given the PDE

$$
x y u u_{x}+y^{2} u u_{y}=x^{2}+y^{2}, \quad x>0, y>0
$$

and the auxiliary condition $u(x, x)=\sqrt{x}$, establish whether there exists a unique solution, and if so, find it. If there are infinitely many solutions, find two different ones. Otherwise show that there exist no solutions to the Cauchy problem. Hint: the characteristic equations were solved in class.
2. Given the Cauchy problem

$$
u_{x}+u_{y}=1, \quad u(x, x)=x .
$$

Check that this problem does not have a unique solution, and sketch the characteristics and the projection of the initial curve on the $x y$ plane. Recall that additional solutions can be given by specifying new curves that are non-tangential to the characteristics. For example, other solutions to this Cauchy problem can be given by using the new auxiliary conditions:
(a) $u(x, 1)=x$ which yields $u(x, y)=x$.
(b) $u(1, x)=x$ which yields $u(x, y)=y$.
(c) $u(x,-x)=0$ which yields $u(x, y)=(x+y) / 2$.

Add the projections of each of these initial curves to your sketch above, and verify the given solutions. Then find two different solutions by specifying other auxiliary conditions (hint: can you involve an arbitrary function?).
3.* Find a function $u(x, y)$ that solves the Cauchy problem

$$
x u_{x}-y u_{y}=u+x y, \quad u(x, x)=x^{2}, \quad 1 \leq x \leq 2
$$

(a) Check whether the transversality condition holds.
(b) Draw the projections on the $x y$ plane of the initial curve and the characteristic curves emanating from the points $(1,1,1)$ and $(2,2,4)$.
(c) Is the solution well defined in the entire plane?

