PDEs 10422884 – Homework 6

This homework must be handed in prior to the tutorial on June 8th, 2017.

*1. Solve

$$u_{tt} - c^2 u_{xx} = e^{ax}, \ u(x,0) = 0, \ u_t(x,0) = 0.$$

*2. Solve

$$u_{tt} = 4u_{xx}$$

on $0 < x < \infty$, u(0,t) = 0, u(x,0) = 1, $u_t(x,0) = 0$ using the reflection method. Does your solution have a singularity? Try to explain why, in terms of compatibility of the initial and boundary conditions (*optional*).

*3. Find a solution to the problem

$$u_{tt} - c^2 u_{xx} = 0, \ x > 0, \ t > 0$$

with u(0,t) = 0, t > 0, and $u(x,0) = xe^{-x}$, $u_t(x,0) = 0$, x > 0.

*4. Find a particular solution u_p to the inhomogeneous equation

 $u_{tt} - u_{xx} = t^7, -\infty < x < \infty, t > 0.$

Using this particular solution, solve the Cauchy problem with initial data

 $u(x,0) = 2x + \sin(x), \ u_t(x,0) = 0, -\infty < x < \infty$

by substituting $w = u - u_p$ and using D'Alembert's formula.

**5. (Optional) Solve

$$u_{tt} = c^2 u_{xx}, \ 0 < x < \infty, \ 0 \le t < \infty, \ u(x,0) = 0, \ u_t(x,0) = V$$

subject to $u_t(0,t) + au_x(0,t) = 0$, where V, a and c are positive constants, and a > c.