PDEs 10422884 - Homework 6

This homework must be handed in prior to the tutorial on June 8th, 2017.
*1. Solve

$$
u_{t t}-c^{2} u_{x x}=e^{a x}, u(x, 0)=0, u_{t}(x, 0)=0
$$

*2. Solve

$$
u_{t t}=4 u_{x x}
$$

on $0<x<\infty, u(0, t)=0, u(x, 0)=1, u_{t}(x, 0)=0$ using the reflection method. Does your solution have a singularity? Try to explain why, in terms of compatibility of the initial and boundary conditions (optional).
*3. Find a solution to the problem

$$
u_{t t}-c^{2} u_{x x}=0, x>0, t>0
$$

with $u(0, t)=0, t>0$, and $u(x, 0)=x e^{-x}, u_{t}(x, 0)=0, x>0$.
*4. Find a particular solution u_{p} to the inhomogeneous equation

$$
u_{t t}-u_{x x}=t^{7},-\infty<x<\infty, t>0
$$

Using this particular solution, solve the Cauchy problem with initial data

$$
u(x, 0)=2 x+\sin (x), u_{t}(x, 0)=0,-\infty<x<\infty
$$

by substituting $w=u-u_{p}$ and using D'Alembert's formula.
${ }^{* *} 5$. (Optional) Solve

$$
u_{t t}=c^{2} u_{x x}, 0<x<\infty, 0 \leq t<\infty, u(x, 0)=0, u_{t}(x, 0)=V
$$

subject to $u_{t}(0, t)+a u_{x}(0, t)=0$, where V, a and c are positive constants, and $a>c$.

