## PDEs 10422884 - Homework 5

This homework must be handed in prior to the tutorial on May 25th, 2017.
*1. Given the Cauchy problem for the wave equation

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0 \\
& u(x, 0)=0 \\
& u_{t}(x, 0)= \begin{cases}1 & |x|<a \\
0 & |x| \geq a\end{cases}
\end{aligned}
$$

describing the motion of a string, sketch the profile of the string ( $u$ as a function of $x$ ) at the times $t=a / 2 c, a / c, 3 a / 2 c$, and $2 a / c$.
Hint: Calculate

$$
u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s=\frac{1}{2 c} \times(\text { length of }(x-c t, x+c t) \cap(-a, a))
$$

For the first case, $u(x, a / 2 c)=\frac{1}{2 c} \times($ length of $(x-a / 2, x+a / 2) \cap(-a, a))$, which takes different values depending on whether $|x|<a / 2, a / 2<x<$ $3 a / 2$ and so on.
*2. The midpoint of a piano string of tension $T$, density $\rho$ and length $L$ is hit by a hammer with head diameter $2 a$. A flea is sitting at a distance $l / 4$ from one end (assume $a<l / 4$ ). How long does it take the disturbance to reach the flea? Hint: formulate a wave equation. If the units of density $[\rho]=k g / m$ and the units of tension $[T]=k g \cdot m / \mathrm{s}^{2}$, what combination of these two will give a speed with $[c]=m / s$ ?
3. Use the parallelogram identity to solve the initial-boundary value problem

$$
\begin{aligned}
& u_{t t}-u_{x x}=0, \quad 0<x<\infty, t>0 \\
& u(x, 0)=\sin (x), x \geq 0 \\
& u_{t}(x, 0)=\cos (x), x \geq 0 \\
& u(0, t)=\sin (t), t \geq 0
\end{aligned}
$$

4. (Optional) Show the following invariance properties of the wave equation: (a) any translation $u(x-y, t)$ of a solution is also a solution (for fixed $y$ ). (b) any derivative, e.g. $u_{x}$, of a solution is also a solution. (c) The dilation $u(a x, a t)$ of any solution is again a solution for any constant $a$.
