PDEs 10422884 - Homework 9

This homework must be handed in prior to the tutorial on June 29th, 2017.

1. (a) Consider the eigenvalue problem $X^{\prime \prime}=-\lambda X$ on the interval $[0, l]$ with Robin boundary conditions:

$$
\begin{array}{r}
X^{\prime}+X=0 \text { on } x=0, \\
X^{\prime}=0 \text { on } x=l .
\end{array}
$$

Investigate the problem assuming $\lambda=-\gamma^{2}<0$. Is/are there one (or many) negative eigenvalue(s)? Explain your answer graphically!
(b) Assuming you are treating a wave or heat equation on $[0, l]$, such that the expansion of the solution is

$$
\begin{equation*}
u(x, t)=\sum_{n} T_{n}(t) X_{n}(x) \tag{1}
\end{equation*}
$$

where $X_{n}(x)$ are the eigenfunctions determined by the boundary conditions, and

$$
T_{n}(t)=\left\{\begin{array}{l}
A_{n} e^{-\lambda_{n} k t} \text { for the heat eqn. } \\
A_{n} \cos \left(\sqrt{\lambda_{n}} c t\right)+B_{n} \cos \left(\sqrt{\lambda_{n}} c t\right) \text { for the wave eqn. }
\end{array}\right.
$$

write down the form of the expansion assuming the Robin boundary conditions given above, and arbitrary initial conditions (e.g. $u=\phi$ on $t=0$ for the heat equation). Try to interpret the results.
2. Solve the forced wave equation

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x}+g(x) \sin (\omega t), 0<x<l \\
& u=0 \text { on } x=0, x=l \\
& u=u_{t}=0 \text { on } t=0
\end{aligned}
$$

For which values of ω can resonance occur? (Consult your notes from ODEs last semester).
3. Solve via series expansion the heat equation $u_{t}=u_{x x}$ in $(0,1)$ with $u_{x}(0, t)=0, u(1, t)=1$, and $u(x, 0)=x^{2}$. Compute the first two coefficients explicitly. What is the equilibrium state (term that does not tend to zero with large time?)
4. Write the Legendre equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

in Sturm-Liouville form

$$
\left(p v^{\prime}\right)^{\prime}+q v=0 .
$$

Do the same for the Bessel equation

$$
r^{2} w^{\prime \prime}(r)+r w^{\prime}(r)+\left(r^{2}-\nu^{2}\right) w(r)=0
$$

Hint: try dividing by r and transforming $x=r / \lambda$.
5. (Optional mathematical background) Recall that we call a relation \langle,$\rangle :$ $X \times X \rightarrow \mathbb{R}$ from some vector space X into the real numbers an inner product (or scalar product) if $\forall x, y, x_{1}, x_{2} \in X, \forall \lambda \in \mathbb{R}$:
(a) $\left\langle x_{1}+x_{2}, y\right\rangle=\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle$, (b) $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$, (c) $\langle x, y\rangle=\langle y, x\rangle$, (d) $\langle x, x\rangle \geq 0$, (e) $\langle x, x\rangle=0 \Leftrightarrow x=0$. Show, for the vector space of integrable functions on an interval $[a, b] \in \mathbb{R}$ that

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

satisfies these properties and defines an inner product on this space.

